

Introduction to Machine Learning

Prof. Mr Anirban Santara

Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur

Lecture – 31

Python Exercise on Neural Network

Hello friends, welcome to the tutorial session of the 6th week of this course. I am

Anirban. Today’s topic is artificial neural network. As you people may already know that

artificial neural networks from the foundation of a class of machine learning algorithms

which are called deep learning, and currently these are doing wonders in the field of

artificial intelligence.

So, today I am going to teach you how to make simple neural network on a simple task,

and show you how the performance changes when different changes are made to the

architecture and the learning algorithm.

(Refer Slide Time: 01:00)

And the library that we are going to use for machine learning for deep learning is called

tensor flow. So, tensor flow is a deep learning library which is open source and it was

open source by Google and it is pretty state of the art and it is pretty popular as well both

in the academy and the industry. And it has a large number of resources.

(Refer Slide Time: 01:20)

And a certain you know set of rappers have been developed around tensor flow, which

come by the name of TF learn, so it gives the same s k learner scikit learn interface the

API interface that you have been like that I have been using in my previous lectures. And

that nice interface that model dot just you declare the model, you do a model dot fit it

trains the architecture and then you do model dot predicted means a predictions and the

same beautiful TF learn in this s k learn API is present in this TF learn library. So, TF

learn is a set of rappers, so python rappers on top of the generic tensor flow library and

we will be using that in this lecture in this session. It will be pretty interesting.

(Refer Slide Time: 02:12)

And the kind of work that the tasks that we people are going to we are going to solve in

this session is the recognition of handwritten digits.

(Refer Slide Time: 02:24)

So, the MNIST database is it is stands for so it is the mixed MNIST database. It is a

database of handwritten digits, and these digits where actually they were extracted from

post postal codes, the pin codes, the zip codes that people write on letters, so they were

scanned and the individual handwritten these letters these digits were extracted. And the

task is to automatically identify which handwritten digit was written in that particular

you know that particular instance.

So, here are some examples from the data set, and so there are some pretty nasty looking

characters right like this 8, which looks really bad; this may be a 7 or something, so it is

not a trivial task of identifying the handwritten digits. And this MNIST database is one of

the first choices of data set which people would like to use just to check out the

performance of a new learning algorithm that they have come to their mind. So, this is

pretty basic stuff and I think that this particular exercise will give you a good head start

in these deep learning algorithms.

(Refer Slide Time: 03:39)

So, without further I do let us go ahead and start writing our code. So, the first step is to

load the dependencies. And yes, I am here we writing the code from scratch and in

ipython notebook or jupyter notebook, and I will share this notebook on githoc and link

in the description, so the link in the description so that you can also use and referred to it

later on right. So, let me first load the dependencies so I have to import (Refer Time:

04:03) as np import TF learn. And from TF learn dot datasets import MNIST. So, we just

go ahead and execute this. So, once this has been done, this may be I can zoom in a little

bit, so that you can see. So, these three things are the necessary dependencies the

execution is complete.

Let us go ahead and load the data. So, let us declare this as MNIST data equal to MNIST

dot read datasets. So, the read datasets is of function, so I just make sure yes. So, the read

datasets is a function which is there in within the MNIST this (Refer Time: 05:09) that

we are invoking, so you can actually look up the structure of TF learn dot datasets. And it

has a number of really good utilities, and this read datasets function will read the data

set; so if the data set is not there in your computer, you just going to download it first.

And then it is going to I do some preprocessing on top of that bring everything into the

format that is easy for machine learning and then written the data set in a nice format. So,

we will see the format of the data in a minute.

So, I will just write one hot equal to true. So what does these do, let us execute and then

speak. So, it is already done. So, as you can see that the down datasets were already

downloaded in my system. So, they just you know read the files and you have the data

here right. So, I will just add a new cell and start speaking, add cell block. So one hot

target are targets represented as a vector in which just one of the terms is a 1 and rest all

of them are 0. So, it is like if you have 10 different digits to identify then the each digit

each handwritten digit may be represented by a 10 long vector, vector of 10 elements.

And say it is an image of a 4, 4, so the one hot vector corresponding to this 4 will be 0 0

0 1, and the rest zeros. So, all zeros except the fourth position which is a one so this one

hot representation of vectors like of targets is useful for using along with different kinds

of loss functions like cross and (Refer Time: 07:02) loss or even like it is like describing

it is a good way of describing it is a very usual popular way of describing categorical

targets so in the form of a binary vector. It is called one hot vector because of just one of

those elements in that vector is one, the element corresponding to the entry of that

particular class.

So, I just said one hot equal to true over here, now let us have a look at the data. So it is

going to make the targets in a give written the targets in a one hot format. So, let us first

divide the data set into training validation and test bit. So, maybe I can say data

underscore train equal to MNIST data dot train so it is organize this way data underscore

validation equal to MNIST data dot validation and data underscore test equal to MNIST

underscore data dot test. So, we just did the training validation and test split is and added

on the cell and let us have a look at the training data. So, let us say that we load them into

the variables x and y, so this is going to be equal to data train, so the training data and

underscore images gives is the field within the class this like there is a class call data set.

(Refer Slide Time: 08:48)

And you can look up the structure; I will give the links in the description of the video.

So, this underscore images this particular attribute gives the inputs and data underscore

train dot underscore, so it is target labels. So this will, so now you have the inputs and

the target values in x and y respectively. Let us go ahead and see what the shapes of these

entries are like this we can do x dot shape and see, so there are that entire data set has

60000 thousand images, out of them 55,000 are going to used for training, and the rest

will be so have been distributed among the validation and test sets.

So, x dot shape and each of these numbers that is you saw over here, so each of these

images is a 28 cross 28 image black and white image. So, 28 times 28 make the number

784, so that is why you can see that the length of each training input vector is 784, and

there are 55,000 of them. So, they have been organized in the form of this metrics.

Let us see how y looks like, y there are also like for every single of the 55,000 training

images, we have their corresponding label encoded as a one hot vector and let us have a

look at what this one hot vector looks like let us see what y zero looks like see. So, it is a

ten long vector there are 10 entries and the corresponding like this, this happen to be the

image of a eight right sorry seven, so it is like 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. So, this was the

image of a seven that example of and hence that is the position for seven is one the rest

are zero. So, this was just to show you how things look like.

So, after this has been done, let us go ahead let me delete this cell, it is useless. So, just

go ahead and delete the cell. So, once we have the training data ready, let us go ahead

and make the model. So, the tensor flow it organizes the entire architecture of the neural

network in the form of a graph, so it is called the tensor flow graph. So, the first thing

that we have to do while making your neural network is to first define the graph structure

so initialize a graph by invoking this function.

(Refer Slide Time: 12:14)

So you just call TF learn, and just a second, now, yes. So, TF learn dot in it underscore

graph and you specify what all system resources that will be necessary for this particular

exercise. And just as a matter of fact that deep learning requires a special kind of you

know computing infrastructure which is known as graphics processing unit. So, the same

graphic cards that again we that are used for playing games that you can find that is used

for like heavy duty, visual renderings, the same graphics cards, so they are high the

capable of doing metrics multiplications very efficiently and that is what a comes to a

great help in doing this like deep learning applications.

So, tensor flow is it is compatible to it is completely optimized for GPU for this graphics

processing unit is so how much memory from a GPU, you would like to use in a

particular experiment you can specify over here. But my PC does not have a GPU now,

so we will just say specify that we are going to use just all of the four cores of my PC.

So, I just say that this is the compute requirement of the algorithm number of cores equal

to 4.

Next, we go ahead and start making our network. We just we store our network within

the variable called net, so first we add an input data layer. So, it is just called TF learn dot

input underscore data and you say what the shape of the input data should be. So, you

just so the shape is in this case is equal to a list first element is none I will tell you what it

means followed by 784. So, have a look at this, so the first element in the shape this

corresponds to the number of yeah this element none, the first entry in this shaped vector

it corresponds to the number of samples that needs to be presented in a particular batch.

So, in the tutorial session I have already talked about what is batch learning, what is mini

batch learning, what is stochastic learning three different kinds of gradient design that

you can use.

So, the first term gives the number of elements that you want to take in each batch and

that is variable in this case, so that is why you do not specify any entry over here, you

keep it none, so that the graph can be modified accordingly. So and 784 is the

dimensionality of the image that you are going to feed. So, in this case we have like

factorize the 28 28 image into a single vector of length 784, so that is why you have this

entry, so this is your input size.

Next, we are going to add the next layer. And so this is the first hidden layer TF learn dot

fully connected and check this index, perfect. So, in the input will be the net, so which

layers so when you start you know without the manner in which you build a network in

TF learn is by like if you add the layers one by one. So, there is one network object, it is

called net, you first put a input layer in then you add the next hidden layer, then you add

the next hidden layer then another as deep as you want to go. And then finally, you have

an output layer, and then you go ahead and declare your loss functions and the

optimization algorithm and set it to train.

So, we pass this net object as an input to the function, so it is going to add a particular

layer and the shape of the layer. The number of unit is in the layer is going to be say one

hundred we keep it 100 and the activation function of the nodes of the layer is going to

be sigmoid, very sorry let us give it relu first rectified linear unit. So, it has already been

covered in class that what rectified linear unit are so it is one of the best suited for deep

learning for deep neural networks. And it works pretty well and there is a lot of theory

about why rectified linear unit is so awesome.

So, let us go ahead and add the output layer. So, a single hidden layer neural network and

we will do will (Refer Time: 17:26) play using it, play with it, let us see. So, as the

number of units in the output layer is 10, and it is just because you have 10 outputs unit

is right represented as a like 10 output classes and the output labels are coming in the

form of one hot vector. So, the activation here is going to be softmax, so perfect. So, the

softmax layer, it is going to it is a kind of logistic regression so multi multiclass logistic

regression is called softmax. So, you can actually look up the web and figure out what it

looks like perfect. Next, this or this makes our network the networks build is complete.

Now we have to define what kind of loss function we want to use to optimize the neural

network and parameters of the neural network, and what kind of algorithm update

algorithm that we should use, let we want to use. So, we add another layer this is not a an

actual like you know hardware layer to the neural network rather it is a specification of

the a learning algorithm options. So, it is called regression. So, the regression layer

actually does either a linear regression or a logistic regression.

So, the first input as always is net, and then you have to specify the loss function. So, the

loss is equal to categorical cross entropy, so you can look up the web what categorical

cross entropy looks like what it actually is. But I will just few words that categorical

cross entropy is a loss function which tries to match the probability distribution of the

actual observed data samples to the probability distribution that is getting modeled by the

neural network. So, when the cross entropy is actually cross entropy loss the categorical

cross entropy loss is actually an adaptation of the k l divergence distance between the

statistical distance term, statistical distance metric and it directly tries to match the actual

the data distribution and the model distributions in course of the training. So, you can

look up and read more about this, but this is outside the preview of this course.

So, we will put an optimizer, and let it be stochastic gradient descent. Now we have

defined what kind of learning algorithm, and what kind of loss function will be used to

train the neural network. Now, we define, we write this so we define our model. So,

again now the scikit learn API comes in, so see how beautiful it is, so we are just going

to put TF learn dot DNN. So, yes, so we are now that you have already defined what

kind of a neural network you want, and how it should be trained and everything.

Now you initialize this TF learn dot DNN this is like sk learn dot linear regression or

something like that, so a model learning model learning algorithm or a machine learning

model, just define this as a machine learning model. And then you train this model. So, I

will just leave this spot in this particular cell, and we can make new cell for define for

training the model, so it is all compiled.

So, what did we do here we first declare what kind of see compute resources we are

going to use, then we initialized the structure of the neural network. And said what the

different layer sizes should be, what different kinds of activation should be, and then we

said what kind of loss function and what kind of update rule should be used to optimize

the learning algorithm. To learn the weights rather and then we declare the model. And

then it is time to train, oops so I already made another slide another for this. So we are

now going to do model dot fit yeah as we always do.

(Refer Slide Time: 22:16)

So model dot fit, now the model is already declared we train it on x and y. So, these are

your input and targets of the training data. And now you specify a couple of more

options. You specify that the number of epochs of training in epoch is going to be one.

So, what is epoch so it is a very common concept in machine learning, so when you are

actually trying to find out the like you want to do gradient decent, you have a bunch of

parameters which you want to find optimum values of.

And what you do is you show the learning algorithm the same training examples time

and over and over again. So, say you have one million training examples; and in the first

epoch, you are going to show the neural network say it is a neural network the learning

model. So, you show all the in the first epoch you show all the training examples to the

neural network. So, it does some updates everything.

Now in the second epoch you randomize you randomly permute all the, you shuffle all

the training examples you have, and you push it again. And it has been shown that this

helps to break the sequence the like when you are presenting the training examples in a

particular sequence to your machine learning model to a neural network, then the neural

network might actually memorize a sequence.

And so the sequence in which different training examples appear to the neural network,

may actually you know actually we reflected in the optimization in the values of which

the weights can take up. Just to break that sequence what we do is we randomize the

samples and pass the same training said over and over again. And this like carries on the

training, and we need to like the more you train, the better the models fit is on to the

training data. So, it is a concept and I just keep I am going to keep n epoch equal to 1,

number of epochs equal to 1 to like show you the other thing is ok. And it is just going to

speed up the learning process a little bit take a little bit lesser time.

Now you show now it is batch size right, so sorry oops batch size. So, when you as you

are doing stochastic gradient decent, the batch size is going to matter. So, it is the number

of examples that you want to show per epoch per you know per instance of learning or

like after how seeing how many examples you want to do one update. So let us keep

batch size is equal to 10, and another option is show metric. So in the progress of training

as training proceeds it is going to show us the value of accuracy. Let us just go ahead and

see what happens.

Notice here, so as you can see that that the accuracy is increasing; the training accuracy

is increasing the loss is decreasing. And you know it is going to make you divided the

entire training set into batches of size 10 and it is like pushing every single batch and

then updating. So, one update is happening after every batch has been processed and you

can see that the number of examples that have been shown to the neural network is been

counted over here.

So, when all the 55,000 examples have been shown, the training is complete, so one

epoch is complete. And it reports the final accuracy over here. So, let us go ahead and

see how things change when we increase the number of or increase or decrease the

number of nodes of the hidden layer. So, let us go ahead and make the nodes, so let us

make a node that previously therefore, hundred nodes in for neural network with one

hidden layer and 100 nodes accuracy was just 69.5 percent. So, we are now decreasing

the number of nodes and we will see how things change. So, I will restart and run all, just

see here what happens, it will restart, so the performance yeah.

So, now, you can see that the accuracy is increasing slowly because the models learning

capacity has been reduced. The number of parameters is reduced, so the capacity to learn

has also reduced. And however, the training is progressing much faster, so you can just

see that yeah like you know in flash 30,000 examples are processed, because as the

amount of compute whenever a parameters has reduced, now computation has been

faster. What happened my operation and close the files oops restart yeah (Refer Time:

27:47), just a second run all, do not take much time. So, we can expect that the accuracy

will be lesser this time.

Let us see, so you see the accuracy would not increase beyond some 26 percent, and this

is just a training accuracy. As the models learning capacity has reduced, so this has gone

to like 35 percent or something; see 44 percent previously it was 69 percent. So, as the

learning capacity was reduced the neural network could not learn well, and hence the

accuracy is lesser. So, let us go ahead and rest over the number of hidden unit is to 100

previous values and let us add another hidden layer. See, what happens oops so let me

shrink it a little bit and go ahead and add another hidden layer. And see how things

change. So, previously it was 69 percent. Let us go ahead and restart and clear output

yes.

now run all set, let us see how the accuracy changes this time. So, now, the training is a

bit slower, because the size of the network has increased. And but we can like hope that

this times the accuracy will a bit higher, but it is not certain at all it is should not

necessarily be higher, and that is where the entire trick comes in. So, it was like really

you know unfortunate that on increasing the number of hidden layers, the accuracy

actually fail, so this is the actually the trick of deep learning and it was it was seen that

deep neural network with any hidden layers actually fail to arrive at a good solution.

And you can see that the accuracy is a 12 percent, so it just stuck in a bad local minimum

and it had to come out. And so let us go ahead and make a small change to the optimizer

over here. So, there is an optimizer which is called Adam and it is I will put the link in

the description of the video that what it actually does, but it is an you know a

sophisticated optimization algorithm and we can hope that this does a better job and

gives us a better accuracy.

Let us say so see this, see this, it is started with an accuracy of 89 percent look at this.

So, what the Adam optimizer does is it uses a different learning rate for every single

parameter. So, it is like every single parameter are should be may be needed to be treated

differently in course of the algorithm the optimization algorithm. And see you can you

can see just the accuracy see it has it has touch 95 percent 97 percent, so it has a different

learning rate for a different optimizer, different parameter and also the learning rate

changes with time. And it is called annealing and it has a separate annealing scheme for

every single parameters.

So, I will put a link in the description to this paper and it is actually you see there,

accuracy is 96.44 percent. So, these are the different things that so what is you are take

away from this exercise, the take away is that when we have a single hidden layer neural

network, the more is a number of unit is in the hidden layers the more complicated is the

models function - the hypothesis function and hence the more is it capacity to learn. So,

given enough data, it can learn better so that is why 100 unit hidden layers gave an

accuracy of around 69 percent. Whereas, if the when the number of unit was reduced to

say 10 the accuracy drop to 29 or something it was in the twenties.

But and the accuracy now the models complication, the complexity of the model could

be increasing in two ways. Either you increase the number of nodes in the hidden layer in

one hidden layer so you have a just one hidden layer and you put many nodes in that or

you could stack many hidden layers one after the other. And it has been shown so what

we saw here that when we increase the number of hidden layers, then simple stochastic

gradient decent fail to convert show a good local minimum.

So, but the accuracy was just the training accuracy was just twelfth percent, so it is close

to the it is good to call that it did not learn at all it just got lost somewhere. Whereas, so

when you like have so many hidden layers right two hidden layers of 100 unit is each

you have a lot of parameters and that is why you need to choose a very good

optimization algorithm. An optimization algorithm which gives special care to every

single parameter and make sure that these parameters are tuned properly in course of

training, and finally, we can like arrive at a good optimum which may not be the global

optimum, which it may never be reached at all.

So, it may not be a global optimum, but it should be a good local optimum, so that is

why when we used Adam optimizer, and this just I told you in few words what it does so

I will link into the paper, so that you can read it and understand get the full detail about

it. So when we used Adam the performance improved a lot and we got you know 96

percent accuracy. And the current state of the accuracy on MNIST data set is something

like 0.227 percent error, and it is beyond human abilities.

So, the machines today can recognize handling characters be better than human beings.

And so you can like go to the MNIST, Wikipedia page and there it gives list of

algorithms which are doing very good which are the state of the art in this task, but they

use much advance concept like convolutional neural networks and others, which you can

explore yourself. So, both the motivation behind me introducing you to TF learn and the

larger and the like the parent of t f learn which is tensor flow is that just to give you a

heads off in that directions.

So, if you people are enthusiastic about deep learning if you really want to check out

what the magic is all about, how are machine becoming really intelligent like as

intelligent as human beings, and beating human beings in they are own tasks. So, if you

want to check out how deep learning actually works, so this is a very good tool which

you can use for implementing your own algorithms and like there are a lot of like turn of

implementer algorithms already implementer algorithms.

A lot of resources available for this particular library, and people are actively and Google

is actually actively developing this particular library. So, you can use this and you know

explore the possibilities of deep learning in your own field. So, I hope you enjoy this

video, and I recommend you to take this ahead.

Bye, bye, see you in the next video.

