
Introduction to Machine Learning

Prof. Sudeshna Sarkar

Department of Computer science and Engineering

Indian Institute of Technology, Kharagpur

Lecture – 28

Multilayer Neural Network

Good morning. Today we talk about the second part of lecture in Neural Network, where

we will talk about Multilayer Neural Network. We have already looked at individual

neural units and discussed that they can represent linear functions, but the main

excitement about neural network is because they can represent non-linear functions. And

we can represent non-linear functions by stacking layers of perceptrons into different

architectures.

So, today we will look at Feed Forward Multilayer Neural Networks which is a particular

type of connections in neural network

(Refer Slide Time: 01:13)

Now, first of all we will look at what are the limitations of perceptrons. We have seen

that the (Refer Time: 01:19) really not discussed, but perceptrons have this monotinicity

property.

(Refer Slide Time: 01:31)

So in a perceptron what we are doing is that, we have an input and we have multiple

outputs and we have weights associated with them. And because of this type of

connection perceptrons have a monotonicity property. If a link has positive weight

activation can only increase as the input value increases. It cannot represent functions

where input interactions can cancel each other. So each input is individually interacting

with the neural, so it cannot handle interactions between the (Refer Time: 02:04). For

example, perceptrons can be used to represent gates like and suppose there are two inputs

x 1 and x 2 you want to pass one if both x 1 and x 2 are true. Then you can set the

weights and the thresh hold such that the result will be 1 only when x 1 and x 2 is 1.

However, perceptron cannot represent the XOR function. In XOR function, suppose we

have two variables x 1 and x 2 which can take 0 and 1. In XOR is true for in this case it

is negative here and here. So, XOR function is not linearly separable and it is not

monotonic in the individual inputs and it cannot be represented by a perceptron.

(Refer Slide Time: 01:13)

So, a solution to this is to have a multilayer neural network. Where we have this units

stacked on each other. So, we have these inputs.

(Refer Slide Time: 03:40)

So, we have x 1, x 2, x 3, x n as the input and we have let us say 1, this is the first layer

we call it Hidden layer 1 and it has units let us say z 1, z 2, z 3, z l and then there is the

output layer where we have units y 1, y 2. Now, we have inputs feeding through from

input to this layer and etcetera, and then from here to this layer. We can have a multilayer

network where we have the input layer and the output layer and between the input and

the output we can have other units which are called the Hidden Units. Why Hidden?

Because, in the training examples they are not observed, we have the input and the

output these are called the hidden units. And through these hidden units we can represent

many non-linear functions.

For example, if you look at this picture we have x 1 and x 2 and each of z 1 and z 2 is a

linear function of x 1, x 2. And then y is a linear function you know does a linear

separation between x 1 and x 2, but y does a y is a function of z 1 and z 2 and if we use

suitable non-linear activation functions then this sort of connection can represent XOR or

other non-linear function.

(Refer Slide Time: 05:30)

So, we can look at this expression of what multilayer networks can express. We have

seen that single layer networks can represent linearly separable function. Multilayer

networks can express interactions among the input. In particular a 2 layer network means

this is a 2 layer network where you have 1 hidden layer and 1 output layer, this is the

input this is the hidden computing layer this is the output computing layer. And these 2

layer neural network can represent any Boolean function.

And continuous functions within a tolerance provided of course you have the requisite

number of hidden units and you would use appropriate activation functions then all

Boolean functions and all continuous functions within a certain tolerance can be

represented using 2 layer neural networks. If you have 3 layer neural networks, then you

can represent all computable functions. These functions can be represented using 2 layer

and 3 layer neural networks. So, they have very good representation capacity.

But the next question is, is it learnable? Just because a presentation exists to represent a

function does not immediately mean that you can learn the function well. But, for neural

networks like this learning algorithms do exist, but they have weaker guarantees. In

perceptron learning rule we said that, if a function exists then this procedure will

converge. So, for multilayer neural networks we cannot give such strong guarantees, but

algorithms exist and people are working on different very exciting types of algorithms.

(Refer Slide Time: 07:45)

So, let us look at a general structure of a multilayer network. This is a 3 layer network

where there is the input, and then we have the first hidden layer, the second hidden layer,

and the output. This is an example of a layered feed forward neural network. This is a

feed forward neural network because the inputs, these connections that we have drawn

are single connectional. Input to first hidden layer, first hidden layer to second hidden

layer, second hidden layer to output, all the edges are single directional and it is going

forward from the input to output there is no back link.

So, this is why is called feed forward neural network. This is called a layered network

because we have organized the neurons into layers and layer i is connected to layer i plus

1. Also this particular diagram shows a fully connected layered feed forward network,

where there are 2 hidden layers, 1 output layer and of course the input layer is there.

(Refer Slide Time: 08:57)

So, in this particular type of feed forward neural network the input will be going from

feed forward from input to the output through the hidden layer. Now in the while talking

about perceptron training we said that based on the error in the output we change, if we

observe there is an error in the output between what should be the ideal value and what is

computed then we change the weights of this connections so that that error is made

smaller. So that is what we looked at in perceptron training.

Here also we need to do the same thing. However, here there is one difficulty. We know

what should be the ideal output here and the ideal output here, so based on that we can

change these weights. But, at the hidden node the ideal output is not told to us, it is not

known to us directly, so on what basis do we compute these weights. We know the ideal

output here, we can compute the error directly and on that basis we can update these

weights. But we need to know what is the error here.

So, what is done is that the error that is observed here is propagated backwards. The

assumption is the error here is a result of error here, here, and here, because these are the

three nodes that are feeding inputs. This error here is due to errors here, and therefore

what we do is that this error we now back propagate to these nodes. The error here also

we back propagate to this nodes based on these each of the nodes we know what is the

notional error, based on that error we update this weights. If there were more layers here,

the error here will again be back propagated to those other nodes.

So, the error signal flows backward. The computation in the network is forward, but the

error signals flow backward based on this computation of the error signals we figure out

how the weights have to be changed. That is why the method for updating weights in

such multilayered neural network is called back propagation. So the input is going

forward and the error signal is going backward.

(Refer Slide Time: 11:49)

So, these are the steps in the back propagation training algorithm. First step is

initialization, we give the structure of the network and we initialize the values of these

weights and usually we give these weights small random values. We give them small

random values to the weights at different biases in the network.

 (Refer Slide Time: 12:21)

 Now after initialization we do the forward computing.

(Refer Slide Time: 12:37)

Now what we do is that we take our training example which comprises x 1, y 1, x 2, y 2,

x m, y m. These are our training examples we take the examples one by one and apply

them to the network. We apply x 1 to the network we get some output y 1 hat. So, given

x 1 we get y 1 hat, so this is the output that we get. And the ideal output is y 1 hat, and

the outlet let me draw it here. So, the output that we get is y 1 hat, here we get y 2 hat,

here we get y m hat for a particular configuration of the network. And if this y 1 hat and

y 1 are different this is different then we look at the error and based on this we change

the weights.

So, in the format computing we apply the input first to this layer here we first take the

summation followed by the activation function we get the output at this layer; we get the

output z 1, z 2, z 3, and then based on that we compute y 1. y 2 etcetera as this is

computed as the activation function applied to sigma w i z i right here, it is activation

function applied to sigma x i w i. So, we get the do the forward computing.

(Refer Slide Time: 14:07)

After doing the forward computing, now we have to update the weights. As i said that we

can update the weight at the output layer in a similar fashion as we did for single layer

units. If you think of you have single layer sigmoid units we have already worked out

how to update the weights. These weights, suppose let us say this set of weights we call

them w and this set of weights we call them v. So, w is updated using the sigmoid layer

training rule which we discussed in the last class.

But, how to update v; As we said that we do not know the target values of z 1, z 2, z 3, so

what we do is that we back propagate the error here to the error here. So, we propagate

errors which are visible at the output units to this hidden units and then based on that

error we do the similar training rule. And if there were more layers between this and the

input so these errors can be further propagated in this direction, further propagated

downwards. So, error back propagation can be continued if the net has more than hidden

layers.

(Refer Slide Time: 15:44)

Now, we will have to see how to compute the errors. And for that let us try to do the

derivation of this computation.

(Refer Slide Time: 16:08)

Now, for the output neuron so the error function is E equal to half sigma y minus y hat

whole square, and we can take summation over all the training examples if you wish.

Now let us think of in the network we have different units, these units are either at the

output or at the hidden layer, so let us take any unit chain. For each unit j, so j is a unit

and for j the output is o j. First of all we have seen that in the unit there are two

components; one is the summation component, the second is the activation function

component.

So first, the summation is applied and then the activation function is applied. Let us say

that output here we call net j and output after this we call o j, this is a unit j. So, the

output of the summation is net j and output of the final output is o j. So for unit j, o j

equal to phi of net j and net j equal to summation w i x i, where i ranges over all the

inputs to the unit j. This is equal to phi of sigma k equal to 1 to n, k ranges of all the

input w k j. So, w k j is the weight from the unit k to this unit j and o k is the output of

unit k. So, output of unit k is an input to unit j. Suppose, this is a node which is j and this

has these three inputs; 1, 2, 3,, so this is w 1 j, this is w 2 j, this is w 3 j and the output is

here o 1, o 2, o 3. So, this is the output computed as unit j.

Now, if we want to find the partial derivative of the error with respect to w i j we get this

is equal to del e by del o j, del o j by del net j, del net j by del w i j. So to simplify the

computation we have used the chain rule to write del e the partial derivative of the error

with respect to w i j as the product of these three partial derivatives, so to make the

computation simple for us. This is m j this is my unit j and these are the units which are

feeding to this unit, this is the unit i. And j has you know initially the output is net j and

then the output is o j. So this is o j and this is o i.

Now, we have decomposed this partial derivative in these three components. Now what

we will do is that let us remember this and we will do these three computations

separately then we will write them together. So first let us look at del net j by del w i j,

del net j by del w i j. So what is net j, net j is sigma o i w i j. And so we have del del w i j

sigma of w k j o k equal to 1 to n, so this is equal to o i. Because only here we have w i j

and these other link 1 to n they have nothing to do with i. So, del net j by del w i j is

simply o i. In corresponding to o i only we have w i j, and we have o 1 w 1 j, o 2 w 2 j, o

3 w 3 j they have nothing to do with w i j. So only here we will have and so this is equal

to o i.

(Refer Slide Time: 22:46)

So, del net j by del w i j this we have this part we have computed and this a is equal to o

i. Let me clean this so that we can work out the other two components of this expression.

Next let us take this second term del o j by del net j. What is o j? O j equal to phi of net j,

so del del net j we have phi of net j. We have already seen that this particular derivative

will depend on the form of the activation function if you assume sigmoid activation

function, for sigmoid activation function we will have this is equal to phi of net j 1 minus

phi of net j. So, this is the second term here which we have computed given like this.

Now, let us look at the third term del e by del o j. Now we can take the derivative with

respect to o j and we can get recursive expression of the derivative as follows; this is

equal to summation over i. Now first of all let us say that the inputs to this network are 1,

2, 3, 4 up to n, so, let us say z equal to 1, 2, n these are the inputs to the unit o j. We can

write this as follows; summation i. So, del e o j, before that let me write this.

So, this is e of the output o j is equal to this error is dependent on or rather write let me

just write it in a proper way. It is other way round. So, this error at the unit o j has come

from the units which are upstream of o j. If you allow let me rub this part, so that we can

make the drawing here.

So, this is my the unit j and j has certain input which we have already seen, but j outputs

to the next layer, and let the output of j go to the input of these units and let us call this

set of nodes z. And let set say that z comprises of z 1, z 2, etcetera, or just for simplicity

let me denote it for this step as 1 2 l. These are the nodes to which the output of j is

feeding. During back propagation the error of these nodes is due to the error here. So, the

error of o j is based on error of net z 1 net z 2 net z 3, or for simplicity let me write net 1,

net 2, etcetera net l by del o j.

(Refer Slide Time: 27:56)

So, these components due to net 1, net 2, net l we can do a summation. We can write this

as let me again compact it error of 1, 2, l, and this we can write as summation over l, this

index letters call it i d or let us use l as the index and l we have del e by del net l del net l

by del o j. So, this error is coming from these units and i am taking the summation over

that so summation of del e by del o j del e where it is coming from this unit. So, we were

writing it in chain form as del e by del net l del net l by del o j. So, for this node we have

net 1 and then o 1, net 2 then o 2, net 3 then o 3, and the output of this contributes to the

net 1 contributes to net 2 contributes to net 3.

Now what we can write is that, if we look at this so we can write this as summation of

over l del e by. So, let us look at the output here, output here is o l. We can write it as del

e by del o l, del o l by del net l. This part i have expanded to del e by del o l times del o l

by del net l and we have del net l by del net j. So, del net l by del o j, so net l will depend

on sigma w j l o j, so from this we get w j l. This component is equal to w j l. So, we

have this expression.

We can compute this derivative of error with respect to o j if all the derivatives with

respect to the output of the next layer are already computed. Now, we can write this as.

Suppose we have del e by del w i j equal to delta j o i. We have the output of the current

unit and the delta or the errors which are available here these errors are the errors which

are available here, which is being proper contributing to the error here. So, this delta j

corresponds to the error which was computed at this layer which is brought here. And the

component of this delta j are, so delta j is one of this units and it is component is del e by

del o j times del o j by del net j.

And this will be treated in different ways depending on whether the unit is the output unit

or it is an intermediate unit. If it is an output unit we can use the formula which we have

already seen so it will be equal to o j minus t j, t j is the target output at that node which

we wrote us here, so o j minus t j times o j times 1 minus o j. This will be if j is an output

neuron. And if it is an intermediate neuron this will be equal to it will get the outputs

from the next layer, get the errors or the delta values from the next layer as we have

written here so it will be sigma over the set z delta l w j l times o j times 1 minus o j, if j

is an in a neuron.

So, this delta j is if we are looking at for the output neuron we have already seen this

delta j equal to this, but for an intermediate neuron it comes from this formula where we

will get delta j as sigma over z. Where, z is the set of those units to which this unit feeds

input, so sigma over z the delta of those nodes the errors computed at those nodes times

w j l times o j into 1 minus o j. This particular part, this comes due to the sigmoid

activation function, if you change the activation function this will be a little different.

So, we stop the class today and in the next class we will look at how this is incorporated

into the back propagation algorithm.

Thank you very much.

