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Multilayer Neural Network 

 

Good morning. Today we talk about the second part of lecture in Neural Network, where 

we will talk about Multilayer Neural Network. We have already looked at individual 

neural units and discussed that they can represent linear functions, but the main 

excitement about neural network is because they can represent non-linear functions. And 

we can represent non-linear functions by stacking layers of perceptrons into different 

architectures.  

So, today we will look at Feed Forward Multilayer Neural Networks which is a particular 

type of connections in neural network 

(Refer Slide Time: 01:13) 

 

Now, first of all we will look at what are the limitations of perceptrons. We have seen 

that the (Refer Time: 01:19) really not discussed, but perceptrons have this monotinicity 

property. 
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So in a perceptron what we are doing is that, we have an input and we have multiple 

outputs and we have weights associated with them. And because of this type of 

connection perceptrons have a monotonicity property. If a link has positive weight 

activation can only increase as the input value increases. It cannot represent functions 

where input interactions can cancel each other. So each input is individually interacting 

with the neural, so it cannot handle interactions between the (Refer Time: 02:04). For 

example, perceptrons can be used to represent gates like and suppose there are two inputs 

x 1 and x 2 you want to pass one if both x 1 and x 2 are true. Then you can set the 

weights and the thresh hold such that the result will be 1 only when x 1 and x 2 is 1. 

However, perceptron cannot represent the XOR function. In XOR function, suppose we 

have two variables x 1 and x 2 which can take 0 and 1. In XOR is true for in this case it 

is negative here and here. So, XOR function is not linearly separable and it is not 

monotonic in the individual inputs and it cannot be represented by a perceptron. 
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So, a solution to this is to have a multilayer neural network. Where we have this units 

stacked on each other. So, we have these inputs. 
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So, we have x 1, x 2, x 3, x n as the input and we have let us say 1, this is the first layer 

we call it Hidden layer 1 and it has units let us say z 1, z 2, z 3, z l and then there is the 



output layer where we have units y 1, y 2. Now, we have inputs feeding through from 

input to this layer and etcetera, and then from here to this layer. We can have a multilayer 

network where we have the input layer and the output layer and between the input and 

the output we can have other units which are called the Hidden Units. Why Hidden? 

Because, in the training examples they are not observed, we have the input and the 

output these are called the hidden units. And through these hidden units we can represent 

many non-linear functions. 

For example, if you look at this picture we have x 1 and x 2 and each of z 1 and z 2 is a 

linear function of x 1, x 2. And then y is a linear function you know does a linear 

separation between x 1 and x 2, but y does a y is a function of z 1 and z 2 and if we use 

suitable non-linear activation functions then this sort of connection can represent XOR or 

other non-linear function. 
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So, we can look at this expression of what multilayer networks can express. We have 

seen that single layer networks can represent linearly separable function. Multilayer 

networks can express interactions among the input. In particular a 2 layer network means 

this is a 2 layer network where you have 1 hidden layer and 1 output layer, this is the 

input this is the hidden computing layer this is the output computing layer. And these 2 



layer neural network can represent any Boolean function. 

And continuous functions within a tolerance provided of course you have the requisite 

number of hidden units and you would use appropriate activation functions then all 

Boolean functions and all continuous functions within a certain tolerance can be 

represented using 2 layer neural networks. If you have 3 layer neural networks, then you 

can represent all computable functions. These functions can be represented using 2 layer 

and 3 layer neural networks. So, they have very good representation capacity. 

But the next question is, is it learnable? Just because a presentation exists to represent a 

function does not immediately mean that you can learn the function well. But, for neural 

networks like this learning algorithms do exist, but they have weaker guarantees. In 

perceptron learning rule we said that, if a function exists then this procedure will 

converge. So, for multilayer neural networks we cannot give such strong guarantees, but 

algorithms exist and people are working on different very exciting types of algorithms. 
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So, let us look at a general structure of a multilayer network. This is a 3 layer network 

where there is the input, and then we have the first hidden layer, the second hidden layer, 

and the output. This is an example of a layered feed forward neural network. This is a 



feed forward neural network because the inputs, these connections that we have drawn 

are single connectional. Input to first hidden layer, first hidden layer to second hidden 

layer, second hidden layer to output, all the edges are single directional and it is going 

forward from the input to output there is no back link. 

So, this is why is called feed forward neural network. This is called a layered network 

because we have organized the neurons into layers and layer i is connected to layer i plus 

1. Also this particular diagram shows a fully connected layered feed forward network, 

where there are 2 hidden layers, 1 output layer and of course the input layer is there. 
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So, in this particular type of feed forward neural network the input will be going from 

feed forward from input to the output through the hidden layer. Now in the while talking 

about perceptron training we said that based on the error in the output we change, if we 

observe there is an error in the output between what should be the ideal value and what is 

computed then we change the weights of this connections so that that error is made 

smaller. So that is what we looked at in perceptron training. 

Here also we need to do the same thing. However, here there is one difficulty. We know 

what should be the ideal output here and the ideal output here, so based on that we can 



change these weights. But, at the hidden node the ideal output is not told to us, it is not 

known to us directly, so on what basis do we compute these weights. We know the ideal 

output here, we can compute the error directly and on that basis we can update these 

weights. But we need to know what is the error here. 

So, what is done is that the error that is observed here is propagated backwards. The 

assumption is the error here is a result of error here, here, and here, because these are the 

three nodes that are feeding inputs. This error here is due to errors here, and therefore 

what we do is that this error we now back propagate to these nodes. The error here also 

we back propagate to this nodes based on these each of the nodes we know what is the 

notional error, based on that error we update this weights. If there were more layers here, 

the error here will again be back propagated to those other nodes. 

So, the error signal flows backward. The computation in the network is forward, but the 

error signals flow backward based on this computation of the error signals we figure out 

how the weights have to be changed. That is why the method for updating weights in 

such multilayered neural network is called back propagation. So the input is going 

forward and the error signal is going backward. 
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So, these are the steps in the back propagation training algorithm. First step is 

initialization, we give the structure of the network and we initialize the values of these 

weights and usually we give these weights small random values. We give them small 

random values to the weights at different biases in the network. 

 (Refer Slide Time: 12:21) 

 

 Now after initialization we do the forward computing. 



(Refer Slide Time: 12:37) 

 

Now what we do is that we take our training example which comprises x 1, y 1, x 2, y 2, 

x m, y m. These are our training examples we take the examples one by one and apply 

them to the network. We apply x 1 to the network we get some output y 1 hat. So, given 

x 1 we get y 1 hat, so this is the output that we get. And the ideal output is y 1 hat, and 

the outlet let me draw it here. So, the output that we get is y 1 hat, here we get y 2 hat, 

here we get y m hat for a particular configuration of the network. And if this y 1 hat and 

y 1 are different this is different then we look at the error and based on this we change 

the weights. 

So, in the format computing we apply the input first to this layer here we first take the 

summation followed by the activation function we get the output at this layer; we get the 

output z 1, z 2, z 3, and then based on that we compute y 1. y 2 etcetera as this is 

computed as the activation function applied to sigma w i z i right here, it is activation 

function applied to sigma x i w i. So, we get the do the forward computing. 
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After doing the forward computing, now we have to update the weights. As i said that we 

can update the weight at the output layer in a similar fashion as we did for single layer 

units. If you think of you have single layer sigmoid units we have already worked out 

how to update the weights. These weights, suppose let us say this set of weights we call 

them w and this set of weights we call them v. So, w is updated using the sigmoid layer 

training rule which we discussed in the last class. 

But, how to update v; As we said that we do not know the target values of z 1, z 2, z 3, so 

what we do is that we back propagate the error here to the error here. So, we propagate 

errors which are visible at the output units to this hidden units and then based on that 

error we do the similar training rule. And if there were more layers between this and the 

input so these errors can be further propagated in this direction, further propagated 

downwards. So, error back propagation can be continued if the net has more than hidden 

layers. 

(Refer Slide Time: 15:44) 



 

Now, we will have to see how to compute the errors. And for that let us try to do the 

derivation of this computation. 
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Now, for the output neuron so the error function is E equal to half sigma y minus y hat 

whole square, and we can take summation over all the training examples if you wish. 

Now let us think of in the network we have different units, these units are either at the 

output or at the hidden layer, so let us take any unit chain. For each unit j, so j is a unit 



and for j the output is o j. First of all we have seen that in the unit there are two 

components; one is the summation component, the second is the activation function 

component. 

So first, the summation is applied and then the activation function is applied. Let us say 

that output here we call net j and output after this we call o j, this is a unit j. So, the 

output of the summation is net j and output of the final output is o j. So for unit j, o j 

equal to phi of net j and net j equal to summation w i x i, where i ranges over all the 

inputs to the unit j. This is equal to phi of sigma k equal to 1 to n, k ranges of all the 

input w k j. So, w k j is the weight from the unit k to this unit j and o k is the output of 

unit k. So, output of unit k is an input to unit j. Suppose, this is a node which is j and this 

has these three inputs; 1, 2, 3,, so this is w 1 j, this is w 2 j, this is w 3 j and the output is 

here o 1, o 2, o 3. So, this is the output computed as unit j. 

Now, if we want to find the partial derivative of the error with respect to w i j we get this 

is equal to del e by del o j, del o j by del net j, del net j by del w i j. So to simplify the 

computation we have used the chain rule to write del e the partial derivative of the error 

with respect to w i j as the product of these three partial derivatives, so to make the 

computation simple for us. This is m j this is my unit j and these are the units which are 

feeding to this unit, this is the unit i. And j has you know initially the output is net j and 

then the output is o j. So this is o j and this is o i. 

Now, we have decomposed this partial derivative in these three components. Now what 

we will do is that let us remember this and we will do these three computations 

separately then we will write them together. So first let us look at del net j by del w i j, 

del net j by del w i j. So what is net j, net j is sigma o i w i j. And so we have del del w i j 

sigma of w k j o k equal to 1 to n, so this is equal to o i. Because only here we have w i j 

and these other link 1 to n they have nothing to do with i. So, del net j by del w i j is 

simply o i. In corresponding to o i only we have w i j, and we have o 1 w 1 j, o 2 w 2 j, o 

3 w 3 j they have nothing to do with w i j. So only here we will have and so this is equal 

to o i. 

(Refer Slide Time: 22:46)  



 

So, del net j by del w i j this we have this part we have computed and this a is equal to o 

i. Let me clean this so that we can work out the other two components of this expression. 

Next let us take this second term del o j by del net j. What is o j? O j equal to phi of net j, 

so del del net j we have phi of net j. We have already seen that this particular derivative 

will depend on the form of the activation function if you assume sigmoid activation 

function, for sigmoid activation function we will have this is equal to phi of net j 1 minus 

phi of net j. So, this is the second term here which we have computed given like this. 

Now, let us look at the third term del e by del o j. Now we can take the derivative with 

respect to o j and we can get recursive expression of the derivative as follows; this is 

equal to summation over i. Now first of all let us say that the inputs to this network are 1, 

2, 3, 4 up to n, so, let us say z equal to 1, 2, n these are the inputs to the unit o j. We can 

write this as follows; summation i. So, del e o j, before that let me write this. 

So, this is e of the output o j is equal to this error is dependent on or rather write let me 

just write it in a proper way. It is other way round. So, this error at the unit o j has come 

from the units which are upstream of o j. If you allow let me rub this part, so that we can 

make the drawing here. 

So, this is my the unit j and j has certain input which we have already seen, but j outputs 

to the next layer, and let the output of j go to the input of these units and let us call this 



set of nodes z. And let set say that z comprises of z 1, z 2, etcetera, or just for simplicity 

let me denote it for this step as 1 2 l. These are the nodes to which the output of j is 

feeding. During back propagation the error of these nodes is due to the error here. So, the 

error of o j is based on error of net z 1 net z 2 net z 3, or for simplicity let me write net 1, 

net 2, etcetera net l by del o j. 
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So, these components due to net 1, net 2, net l we can do a summation. We can write this 

as let me again compact it error of 1, 2, l, and this we can write as summation over l, this 

index letters call it i d or let us use l as the index and l we have del e by del net l del net l 

by del o j. So, this error is coming from these units and i am taking the summation over 

that so summation of del e by del o j del e where it is coming from this unit. So, we were 

writing it in chain form as del e by del net l del net l by del o j. So, for this node we have 

net 1 and then o 1, net 2 then o 2, net 3 then o 3, and the output of this contributes to the 

net 1 contributes to net 2 contributes to net 3. 

Now what we can write is that, if we look at this so we can write this as summation of 

over l del e by. So, let us look at the output here, output here is o l. We can write it as del 

e by del o l, del o l by del net l. This part i have expanded to del e by del o l times del o l 

by del net l and we have del net l by del net j. So, del net l by del o j, so net l will depend 



on sigma w j l o j, so from this we get w j l. This component is equal to w j l. So, we 

have this expression. 

We can compute this derivative of error with respect to o j if all the derivatives with 

respect to the output of the next layer are already computed. Now, we can write this as. 

Suppose we have del e by del w i j equal to delta j o i. We have the output of the current 

unit and the delta or the errors which are available here these errors are the errors which 

are available here, which is being proper contributing to the error here. So, this delta j 

corresponds to the error which was computed at this layer which is brought here. And the 

component of this delta j are, so delta j is one of this units and it is component is del e by 

del o j times del o j by del net j. 

And this will be treated in different ways depending on whether the unit is the output unit 

or it is an intermediate unit. If it is an output unit we can use the formula which we have 

already seen so it will be equal to o j minus t j, t j is the target output at that node which 

we wrote us here, so o j minus t j times o j times 1 minus o j. This will be if j is an output 

neuron. And if it is an intermediate neuron this will be equal to it will get the outputs 

from the next layer, get the errors or the delta values from the next layer as we have 

written here so it will be sigma over the set z delta l w j l times o j times 1 minus o j, if j 

is an in a neuron. 

So, this delta j is if we are looking at for the output neuron we have already seen this 

delta j equal to this, but for an intermediate neuron it comes from this formula where we 

will get delta j as sigma over z. Where, z is the set of those units to which this unit feeds 

input, so sigma over z the delta of those nodes the errors computed at those nodes times 

w j l times o j into 1 minus o j. This particular part, this comes due to the sigmoid 

activation function, if you change the activation function this will be a little different. 

So, we stop the class today and in the next class we will look at how this is incorporated 

into the back propagation algorithm. 

Thank you very much. 


