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Good morning, today we will have the first module of machine learning part C. I will 

talk about hypothesis space and inductive bias will give you brief introduction to this, so 

that when we talk about a different machine learning algorithms, we can refer to this 

discussion. 
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So, as we have seen that in inductive learning or prediction, we have given a examples of 

data. And the example are of the form as we have seen x, y, where x for a particular 

instance x comprises of the values of the different features of that instance; and y is the 

output attribute. And we can also think of that as being given x and f(x).  

So, if you assume that the output of an instance is a function of the input vector input 

feature vector; and this is the function that we are trying to learn, we are given x, f(x) 

pairs as examples. And we want to learn x. For a classification problem, in the earlier 

class, we talked about two types of supervised learning problems - classification and 



regression depending on whether the output attributes type is discrete valued or 

continuous valued. 

In classification problem, this function f(x) is discrete; in regression, the function f (x) is 

continuous. And we can also apart from classification and regression, in some cases we 

may want to find out the probability of a particular value of y. So, for those problems, 

where we look at probability estimation, our f(x) is the probability of x; so this is the 

type of inductive learning problems that we are looking at.  

Why do we call this inductive learning? We are given some data and we are trying to do 

induction to try to identify a function, which can explain the data. So, induction as 

oppose to deduction, unless we can see all the instances all the possible data points or we 

make some restrictive assumption about the language in which the hypothesis is 

expressed or some bias, this problem is not well defined so that is why it is called an 

inductive problem. 
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Then in the last class, we talked about features. So when we say we have to learn a 

function, it is a function of the features; so instances are described in terms of features. 

So, features are properties that describe each instance; and each instance can be 

described in a quantitative manner using features. And often we have multiple features so 

we have what we call a feature vector, for example, for a particular instance we may be 



or a particular task we may be describing all the instances in terms of ten features, so the 

feature vector will be a one-dimensional vector of size 10. 

Now, based on this we can define a features space. Suppose, for simplicity, let us assume 

that there are two features; and we can say that the features are x 1 and x 2. In general, 

we can have n number of features we have two features the features define a two-

dimensional space if we have n features the define an n dimensional space if you take a 

particular instance let us say d 1 is an instance and for d 1 x 1 equal to 2, x 2 equal to 5. 

So, let us say x 1 is 2 here and x 2 is 5 here. So, this is d 1 so d 1 can be thought of as a 

point in this feature space point in the two dimensional feature space or you can think of 

it as a vector in this space so each instance is a point in the feature space. 

Now, let us look at a classification problem. And let us say that it is a two class 

classification problem so we have given a number of instances for examples some of 

which belong to class 1, the others belong to class 2, so there are two class classification 

problems. We have two types of instances those belonging to class 1 and those belonging 

to class 2. You are given a training set which comprises a subset of the instances, some of 

them are marked class 1, some of them are marked class 2, and we can say that class 1 is 

positive and class 2 as negative. 
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So, we find that we can map different points in this feature space, let us say these are the 

positive points. And we have some other points in this feature space which are negative 



points. Now, what we want to do is we want to learn a function, so that based on the 

function, we want the function to predict whether a new instance, which is given to you. 

Suppose, this is a new instance, which is given to you, we want to know whether this 

should be positive or negative.  

In order to do this, we have to learn a function or the function could be a particular curve 

or a line, which separates the positive from the negative instances. For example, the 

function that we learn could be this function. And we can say that any point which lies to 

this side of the function is positive any point which lies to this side of the function is 

negative. And since this yellow point lies to the left of the function it is negative, so this 

is what inductive learning is about. 
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So, let us look at the slide in this slide, which I have taken from a slide by Jesse Davis of 

University of Washington. We can see a feature space is described in terms of the 

positive and negative examples. The green pluses are the positive points; the red minuses 

are the negative points. Now this is a particular instance, for which x 1 is 0.5, x 2 is 2.8 

and the label of this instance is positive. 
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Now these question mark points are the test points. And we are asked to find out what 

should be the class of those points may be positive or negative in the prediction problem. 

So, in order to answer the prediction problem we have to come up with the function, for 

example, let us say we come up with this pink function pink line, and we say lines points 

that lie to the right of the pink line is negative the points which lie to the left of the pink 

line is positive.  

In this case, this point and this point will be marked positive; and this point and this point 

will be marked negative. So, this pink line is the function that we have come up with and 

so this is the hypothesis or function that we used to do our prediction. 
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Now, we could have instead of this particular line, we could have hypothesized other 

functions. So, all these are possible functions, which we could have found. And the set of 

all such legal functions that we could have come up with they define the hypothesis 

space. In a particular learning problem, you first defined the hypothesis space that is the 

class of function that you are going to consider then given the data points, you try to 

come up with the best hypothesis given the data that you have. 
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We have briefly talked about in the last module about how a function is represented so as 

we have discussed a function is represented in terms of features. There are two things 

that we need in order to describe a function, we have to decide the features of the 

vocabulary, and we have to decide the function class or the type of function or the 

language of the function that we will have to we will be using. So, based on the features 

and the language, we can define our hypothesis space. Various types of representations 

have been considered for making predictions.  

For example, we just saw that we could have a linear function to act as a discriminator 

between two classes, we will in a subsequent class, we will look at a representation by 

using a structure, which we called a decision tree. Where at a decision tree is a tree, 

where at every node, we take a decision based on the value of an attribute. And based on 

that, we go to different branches, so at every node, we make a decision based on the 

value of an attribute and every leaf node is labeled by the value of y. 
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So, decision tree is a type of representation; linear function is one type of representation. 
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You could also have multivariate linear function linear function you can have neural 

networks. These are some examples of representation and we have some examples in the 

slide here. A decision tree, a linear function, a multivariate linear function, a single layer 

perceptron - the basic unit of a neural network, a multi layer neural network; these are 

some of the representations that we will talk about later in this class. 

(Refer Slide Time: 13:03) 

 

So, once you have chosen the features and the language or the class of functions, what 

you have is a hypothesis space. 
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So, hypothesis space is the space of all legal hypothesis, is a set of all legal hypothesis 

that you can describe using the features that you have chosen, and the language that you 

have chosen. And this is the set from which the learning algorithm will pick a hypothesis. 

So, hypothesis space we may represent a hypothesis space by H and the learning 

algorithm outputs a hypothesis h belonging to H, this is the output of a learning 

algorithm. So, capital H denotes all legal hypothesis, all possible outputs by the learning 

algorithm.  

Given the training set given the particular data points, the learning algorithm will come 

up with one of the hypothesis in the hypothesis space which hypothesis it comes up with 

will depend on the data, and it also will depend on what type of restrictions or biases that 

we have imposed, which we will describe later. So, supervised learning, we can think of 

is a device which explore the hypothesis space or which searches the hypothesis space in 

order to find out one of the hypothesis which satisfies certain criteria. 
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Now first some more terminology before we proceed. 
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We have already talked about an example as x, y the value of the input and the value of 

the output x, y pair. Training data is a set of examples is a collection of a examples, 

which have been observed by the learning algorithm or which is input to the learning 

algorithm. We have instance space or feature space, which describes all possible 

instances, so if we have two features x 1 and x 2; let us say x 1 takes value between 0 

and 100, x 2 takes value between 0 and 50; and all points in this plane can describe an 



instance, so this is the instance space. So, instance space is the set of all possible objects 

that can be described by the features. 

And we are trying to learn a concept c. Let us think of a classification problem where we 

have a particular class that we are trying to learn. So, let us think of a two class 

classification problem, we can define one of the classes is positive, the other is negative, 

we can think of the positive examples as the concept which we are trying to learn. So, 

out of all possible objects that we can describe in the instance space, subsets of those 

objects are positive that is they belong to the concept.  

So, the concept c can be a subset of the instance space X, so which define the positive 

points. C is unknown to us and this is what we are trying to find out. In order to find out 

c, we are trying to find a function f, so f is what we are trying to learn. What is f? f is a 

function which maps every input X to an output Y. Now what is the difference between c 

and f, f is used to be a function used to describe the concept they may be same, they may 

be different, because f is defined by the language and the features that you have chosen. 

So, this is a certain difference between f and c. 
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Now, what you are trying to do in learning is given a hypothesis space h. 
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You are trying to come up with the hypothesis small h belonging to the hypothesis H that 

approximates f. You want to find h that approximates f based on the training data that 

you have been given. Now the set of hypothesis that can be produced can be restricted 

further by specifying a language bias. So, hypothesis space defines all possible set of 

hypothesis, you can restrict hypothesis by defining some bias. So, you can specify some 

constraints on the language or some preferences.  

So, bias is of two types, bias can be in terms of constraints or the bias can be in terms of 

preferences. We will define them more precisely soon, but what we mean by constraints 

is suppose your features are Boolean variables, now if you say that you want to consider 

only Boolean functions, which are conjunctions of monomials, so that is providing a bias 

or the language. If you say that you want a function, which is simpler then you are 

putting a preference bias. So, we will talk about this later. 
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So, given these definitions in a learning problem, the input is a training set let us say S, S 

is a subset of the instance space, X is the instance space, which comprises of all possible 

instances and the training examples that you are given is a subset of this. And output, you 

are required to output, a hypothesis small h belonging to the hypothesis space capital H, 

so this is for a classification problem. So, let me rub the board before we proceed. 
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Now, let us look at hypothesis space. Now suppose we look at functions just to take an 

example. 
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We take features which are Boolean. Suppose, x 1, x 2, x 3, x 4 are four features, and 

they are Boolean features the value of the features are true or false. Now, if there are four 

Boolean features, and how many possible instances can you have, in a particular instance 

x 1 can be true or false 0 or 1, x 2 can be 0 or 1, x 3 can be 0 or 1, x 4 can be 0 or 1. So, 

there is 1 to the power 4 or 16 possible instances. So, number of possible instances is 2 to 

the power 4 or 16.  

Now how many possible function are there, how many Boolean functions are possible. 

So, what is a function, a function will classify some of the points as positive others as 

negative out of the 16 points, so that means the number of functions is the number of 

possible subsets of this 16 instances. So, how many possible subsets are there, there are 2 

to the power 16 subsets or 2 to the power 2 to the power 4 subsets. 

Instead of 4 Boolean variables as feature, if you had N Boolean features, then the number 

of possible instances will be 2 to the power N. And number of possible function will be 2 

to the power 2 to the power N. So, this is the size of the hypothesis space. As you can see 

the hypothesis space is very large, and it is not possible to look at every hypothesis 

individually in order to select the best hypothesis that you want. 

So, what do you do you put some restrictions on the hypothesis space, you can put some 

restrictions. So, you select a hypothesis language. So, this hypothesis language may be 

an unrestricted language, for example, all possible Boolean functions or may be a 



restricted language. We have seen already some examples of hypothesis languages as 

decision tree, linear functions, neural networks etcetera or there could be polynomial 

function, linear function, or there could be conjunction Boolean formulas, CNF Boolean 

formulas, unrestricted Boolean formulas so you choose a hypothesis language. The 

hypothesis language if you restrict the hypothesis language, the hypothesis language 

reflects bias, so this reflects a bias or inductive bias of the learner. 
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Now, so let us define formally what is inductive bias. So, when we choose a hypothesis 

space, we need to make some assumptions. And there as I said there are two types of 

assumptions that you can make. You can put restrictions on the type of functions that is 

you can say instead of considering all Boolean formulas, we are going to consider only 

conjunctive Boolean formulas. You can say that for regression problem, you can say that 

we are looking at linear functions, or you can say that we can look at fourth degree 

polynomials or nth degree polynomials or we can say we look as any polynomial. So, 

specifying the form of the function is called restriction bias. 

The second type of bias that you can use is preference bias, where given a particular 

language that you have chosen you say that I am considering all possible polynomials, 

but I will prefer polynomials of lower degree. So, you can say that I am considering all 

possible Boolean functions, but I want a Boolean function which can be described in 

small size. So, you can put different types of bias on your learning algorithm. 
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So, inductive learning means to come up with the general function from training 

examples. Given some training examples, you want to generalize. So, you construct a 

hypothesis h, you are given some training examples which comes from a concept c, and 

you want to find out a hypothesis h. You can come up with the hypothesis that is 

consistence with all the training examples given, then such hypothesis are called 

consistence hypothesis; it is sometimes not possible to come up with the consistence 

hypothesis and sometimes we will not come up with the consistence hypothesis.  

But even when you are coming up with the consistence hypothesis, given a hypothesis 

space and given a training data multiple possible consistence hypothesis can be there, 

and you have to select which one of them you want to output based on your preference 

bias. 

The hypothesis that you want to output is most often, you are guided by you want to 

come up with the hypothesis that generalizes well over the unseen examples, you form 

your hypothesis based on the training data. But you want come up with the hypothesis 

that does not just do well on the training data, but is likely to do well on unseen data.  

Now inductive learning is an ill post problem. If you do not look at all, suppose, your 

hypothesis space is all Boolean formulas, and if you do not look at all the 2 to the power 

N possible examples if you look at a subset of those examples multiple possible 

hypothesis is possible, and they have they will behave differently with the rest of the 



examples. So, you cannot come up with the correct hypothesis by logical being by you 

know which is which is guaranteed to be true without seeing all the training examples. 

So, inductive learning is a ill post problem, you are looking for generalization guided by 

some bias or some criteria. 
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So, why you are being able to generalize, it is based on a assumption we call this 

assumption the inductive learning hypothesis. The hypothesis states that a hypothesis h is 

found to approximate the target function c well over a sufficiently large set of training 

examples. So, if you come up with a hypothesis which has a low training error over a 

sufficiently large training set you expect that hypothesis to do well on unseen examples. 

So, this is the inductive learning hypothesis. 
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And learning can be looked upon as searching through the hypothesis space. 
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Based on the training examples and the bias that you have imposed, there are different 

types of bias for example, one classical bias is a bias called Occam’s Razor. Occam’s 

razor states that you will prefer the simplest hypothesis. So, this is a principle or this is a 

philosophical principle that if something can be described in a short language that 

hypothesis is to be preferred over a more complex hypothesis. 
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And there are other types of inductive bias like minimum description length, like 

maximum margin etcetera which will be only which can be explained, when we talk 

about the specific algorithms where such biases is used. 
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So, in machine learning, you have to come up with a good hypothesis space, you have to 

find an algorithm that works well with the hypothesis space, you have to come up with 

the hypothesis algorithm that works well with the hypothesis space, and outputs on 

hypothesis that is expected to do well over future data points. And you have to 



understand what is the confidence that you have on the hypothesis and these are the 

things that we will discuss. 
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So, machine learning coming up with a function is all about doing generalization. And 

when you are doing generalization, you can make some errors. And the errors are of two 

types, bias errors and variance errors. So, bias as we saw is a restriction on the 

hypothesis space or the preference in choosing hypothesis. By deciding a particular 

hypothesis, you impose a bias. So, this is error due to incorrect assumptions or 

restrictions on the hypothesis space, the error introduced by that is called bias error.  

Variance error is introduced when you have a small test set, so variance error means the 

model that you estimate from different training sets will differ from each other. If you 

come up with the model from some 50 training set, 50 data points, and you take another 

50 data points on the distribution you can come up with the very different model, then 

we say that there is a variance among the results. 
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And this point, we will discuss later when we talk about different learning algorithms. 

This is a very important concept, but we will talk about it when we talk about the 

algorithms, this is overfitting and underfitting. You may come up with the hypothesis that 

does well over the training examples, but does very poorly over the test examples, and 

then we say overfitting has occurred. Overfitting comes from using very complex 

functions so you are using too few training data. And the reverse of overfitting is 

underfitting, if you have a very simple function then it cannot capture all the nuances of 

the data. So, we will talk about details of overfitting and underfitting when we talk about 

specific algorithms. 

With this, we come to the end of this module. 

Thank you. 


