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Hello friends, Anirban here. Welcome to the hands on python coding session of the 5th 

week of this course. Today we are going to learn how to work with support vector 

machines in Scikit Learn. So, we will take up support vector classification. First, see how 

different kernels affect, affect the performance of the support machine classifier and then 

we will have a demo, a quick demo, a quick glance at support vector regression, because 

support vector regression is not a part of this course still like as we are doing 

classification. We are also going to do regression. 

So, the datasets that we are going to use today are the Iris dataset, which we have used 

almost in all of the coding sessions and the Boston house price prediction dataset, which 

we will be using in the regression part and will be predicting the price of houses from 

certain features. And this session is going to be a bit different from the previous coding 

sessions because this time I am going to execute the code directly from the IPython 

notebook cell by cell and you will be like able to, like follow the flow of the code better. 

So, let us see how it goes. 



(Refer Slide Time: 01:31) 

 

So, the first thing that I want to tell you people is a quick recap of what support vector 

machine really is. So, support vector machine is a linear classifier. So, the entire idea is 

about having, about like finding the linear decision boundary, which is at the maximum 

margin from the training point. So, what is the margin? The margin of a, the margin is 

defined as the perpendicular distance of a point from the decision boundary. 

So, the support vector machine classifier tries to maximize the minimum margin of the 

training points. It tries to like fit our decision boundary, which tries to generalize as much 

as possible and the amount of trade off that we want to make for the training set accuracy 

and you know margin or the amount of test set generalization is controlled by the 

regularization parameter. All of these things have already been taught in the theory and 

the tutorial sessions and today we are going to see how they can be implemented in 

Scikit Learn. 

So, first we do all the imports. The modules which we will be using are like NumPy, and 

then we will be using the datasets of Scikit Learn and the SVM module. And also, we are 

going to use the train test split function from Scikit Learn dot cross validation and then, 

we import matplotlib and say, that like we want to use inline plots. So, (Refer Time: 

03:25) the first code, the first block of code. So, all the imports are done now, cool. 
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So, now we first load the dataset. So, the dataset that we are going to use is the Iris 

dataset and the dataset dot load Iris. This function directly loads the dataset into the Iris 

variable and next, we load the features, the input features into the variable x and the 

input labels into the variable y, and then we split the entire dataset into training and test 

sets. And we use the trained test split function from Scikit Learn cross validation and we 

say that the test size will be just 25 percent of the total example size, cool. So, we go 

ahead and execute this done. 

Now, we are going to, you know, check the performance of different kinds of kernels on, 

at the problem of classification of Iris (Refer Time: 04:31). So, we define a function, 

which we name, like evaluate on the test data. So, it is going to take a module and it is 

going to evaluate it on the test data. So, first we are going to find the predictions, alright, 

the predicted values from the model as for the inputs given. 

So, all the test inputs, they are to be, they are going to be supplied through the variable X 

test. So, X test you can see, that it has been created here, right, by the train test split. So, 

it is going to take the test, that inputs and it is going to predict their corresponding labels. 

And now we declare a variable, which is called misclassification, which is going to 

calculate how many counts, how many misclassifications has, have happened and next 



we go ahead and we do run this for loop. So, in this for loop we are looping over the 

entire length of the test set and, and if the prediction, if the ith prediction is not is equal 

to the actual prediction, then, oops, so there is a, there is a bug. So, let me fix it. 

So, it is not misclassification, it is correct classification, alright. So, number of correct 

classification, we initialize it as 0 and every time if we find, when we find, that the 

prediction is equal to the actual value, the target value. Then, we increase the number of 

correct classifications by 1 and then finally, we calculate the accuracy as the number of 

correct classifications. So, this has already calculated the total number of correct 

classifications and length of y test will give you the total number of test cases. So, this 

fraction times 100 will give us the accuracy as a percentage and so, we have the accuracy 

as a percentage over here and we return the accuracy. 

And next, we compile this function and then, we, we are going to explore three kinds of 

kernels here, linear, polynomial and RBF kernels and RBF kernels are also happened to 

be called as Gaussian kernel. So, we have a new declarer, new array or a list as you say 

in Python, called accuracies and you say, that for like index and kernel, in enumerate 

kernel. So, enumerate kernel is going to return an index, which will be like in z i, the 0 or 

1 or 2 and the corresponding element from this tuple. So, for index and kernel and 

enumerate kernels and so, like you are going to take each kernel one by one and then, 

you first declare the model. 

So, svm.SVC, as we can see over here, svm.SVC. So, svc stands for support vector 

classifier and svm.SVC is going to make an instance of the classifier with the value of 

the kernel equal to the kernel that we have like we are going to take in this particular in a 

particular iteration. So, first linear is going to come and sit here, then polynomial, then 

RBF. So, we are going to take the kernels one by one in this for loop and then fix it on 

the training data.  

So, model.fit as you have seen earlier, so there is like Scikit Learn has this wonderful, 

like really, really impressive API in which every single machinery model has the same 

API. You always instantiate the model with certain parameters and hyper parameters, 

with the hyper parameter values and then, you just do a model.fit and on the training 



data, and model dot predict on the test data. And so, this is really impressive and this is 

really nice. 

And the same thing, as you have seen before, is going to like we applied as well here, so 

model.fit x train y train does the training of the SVM and then finally, we calculate the 

accuracies. So, we invoke this function, which we have declared before, we have defined 

before and we pass the trained model and ask it to evaluate it on the test data and it 

returns the accuracy and you just accumulate the accuracies in this accuracy vector, 

alright. So, you just append the acc, the current accuracy and the accuracies list and then 

finally. 

So, this is, if you do not know this particular syntax, so this syntax is that of the print 

command which is in Python 3 and I have used this for a purpose over here and so, to 

activate this particular syntax of print command you have to like import from this 

underscore underscore future underscore underscore. You have to import this print 

function. So, if you do this and you have to do this before all other previous imports.  

So, if you do this import, then the syntax of print function changes and this particular 

print function is much more versatile and much more elegant than the one that was used 

in used in Python 2. So, to use this particular syntax in Python 2, you have to do the 

import from future and then, this goes like this. So, this is going to be, so this is a blank 

space holder, it is going to be filled by accuracy. So, much of accuracy has been obtained 

with kernel this. 

So, we are going to, like, test every single kernel one by one in this particular section. 

So, let us go ahead and run this, cool. So, here we have the results and see that the 

accuracies of the linear and RBF kernels are equal. And this is the particular case over 

here not always is the same case and the accuracy of the polynomial kernel is little bit 

lower. 
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So, let us now go ahead and try and visualize the decision boundaries. So, this will give a 

good insight into how the problem is being solved by the support vector classifier. So, let 

us just go ahead and look at the code. So, this particular section visualizes the decision 

boundaries. So, the first segment we are going to train different kinds of classifier so that 

we train them all over once more. So, we just name them as SVC. 

So, the simple svc, this model is going to be a linear kernel SVM and it is it has been 

trained on the training data. The second RBF SVC is trained is an RBF kernel SVM and 

it has been trained. So, gamma is another parameter of the sum. So, you can actually 

look up the documentation of support vector machine dot support vector classifier of 

Scikit Learn and you will find all of those, like the definitions of each of these 

parameters and then, you train it on the training data. And now, you have a polynomial 

kernel SVM in the same way. So, here you are going to, so in this section I will 

highlight, so in this section you are going to initialize different kinds of kernels and train 

them. 

Now, we would like have to have a mesh plot, which will look beautiful. So, that is why 

you are, in this section you create a mesh of points. So, it extends from the minimum 

possible value of the training set, of each feature of the training set to their maximum 



possible values. So, x min and x max have been calculated, right, and a bit, and like one 

point earlier and one point later. So, this code is just for like nice plot and then you 

define the mesh using NumPy dot meshgrid. 

And now, you go ahead and discuss and we are making plots. So, the titles will be like 

this. So, you are making an array of these titles and then, you again, like, go ahead and 

evaluate different modules. So, it is like in this particular line what we are going to do is, 

we are again enumerating over this tuple. So, all of these three models separated by 

commas within first brackets make a tuple, which is iterable and when you use 

enumerate on this, then it returns an index of each element. It returns each element one 

by one, returns the element one by one. It returns in the index of the element as well as 

the element itself. 

So, we are going to have svc first with an index of 0, i equal to 0 and then, RBF SVC and 

then, poly SVC and then, you first initialize the figure and you do all the predict for all 

the points in the mesh. So, what we are trying to do over here is find out which part of 

the space belongs to which particular category and you will see in a second how this 

thing actually looks. So, then you put everything into a contour plot and finally, place the 

points of the dataset in the plot and do the labeling of the axis over here and then do 

some more cosmetic changes to the plot and then, you put the titles on the plots. And 

finally, you show all the plots. So, let us go ahead and run this part. 
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See how beautiful it is. So, it generates these three plots and the 1st one is for the linear 

kernel, the 2nd one is for the RBF kernel and 3rd one is for the polynomial kernel. So, let 

us go ahead and inspect these one by one and compare. So, in the linear kernel, linear 

kernel is nothing, but just a linear decision module, right, like no future transmissions. 

The entire idea of kernels is like this. You have this set of, like, you may have a set of 

training points.  

As SVM is a linear classifier, it always makes a linear decision boundary. When you 

have a dataset in which the points are not linearly separable, then it does not perform 

well, right. So, you need to have some non-linear decision boundary and that is why, that 

is why, kernels come in. So, the idea is that when the points are not linearly separable, 

you are going to transform them using some feature transformation function into another 

higher dimensional space preferably in which the points would presumably be linearly 

separable. 

So, you are assuming that the points are not linearly separable in the current feature 

space, but when they are mapped to a much higher dimensional feature space, then they 

will be linearly separable. So, you first do that feature mapping using some non-linear 

function and then, in that higher dimensional space you are, you will go ahead and make 



an SVM, right. This is the linear decision boundary, but this entire process can be 

bypassed. So, first feature transformation, then SVM. So, this can be bypassed for using 

a kernel. 

So, kernel function is a function which returns directly the dot product of the transformed 

points from the points, in the initial, of the original feature space. So, a kernel function 

takes points from the original feature space and returns the dot product of those points in 

the transformed space and I have explained this more explicitly in the, with hands, with 

proper figures and everything in the tutorial session of this week.  

So, entire idea of kernel is to extrapolate SVMs to the non-linear decision boundaries, to 

have a SVM with non-linear decision boundaries. So, you do not, you continue to have a 

linear decision boundary, but the decision boundary is in a different space, so to which 

you first transform your data points to, right. So, this linear kernel SVM is doing the, you 

know, linear decision boundary classification in the original feature space. 

And you can see that as the points of the first class, this green point, they are linearly 

separable from the other classes, so they have been neatly separated into a different 

region. However, the other two classes, they are not linearly separable and hence, you 

need, like this linear decision boundary, it tries to like, you know, maximally separate the 

points of the two classes, but it has a lot of misclassifications, right. However, see what 

happens with the RBF kernel. 

So, all of these decision boundaries, they are non-linear. As you can see, the linear 

decision, the linearly separable first class, continues to be separated neatly, but in this 

case, the points of the, white points and these blue points have been separated better 

because as you can see before, that the accuracy, oops, this was for the polynomial 

kernel, yeah. So, it does not, it does not, so the RBF kernel gives the same accuracy as 

the linear kernel for this particular example. However, you can see that the decision 

boundaries are non-linear now. So, you could have, as these decision boundaries are non-

linear, so you could have a better performance in this case. 

And the only thing that I want you people to notice here is that the decision boundaries 



become non-linear. So, the points are first transformed using the, using a particular 

feature transformation function and then, in that transformed domain they are separated 

by linear decision boundaries and when those decision boundaries are visualized in the 

original space, they look non-linear.  

And similar is the case with polynomial kernel and you can see, that it is like, it has tried 

to divide the space using like, you know, cubic polynomials. So, as it is a degree three 

kernel, so it will be fitting polynomials of degree three and splitting the space, whereas 

these would look like, you know, contours in Gaussian curves, like Gaussian curves. 

So, if you like, it is like, it has like fitted Gaussian on the data, one on this part one, on 

this and one on that, or maybe I am not sure about how many components have been 

chosen, but you will find out that there is a function and these things, it is like, you know, 

like these decision boundaries, they are contours of a Gaussian. So, this is how it is and 

both of these, like polynomial kernel and the RBF kernel, they give non-linear decision 

boundaries, whereas the linear kernel gives linear decision boundaries. 
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So, we can like go ahead and find see how support vector regression works. So, support 

vector regression works this way. So, first we load the data. So, datasets dot load boston 



is a function that loads the boston house price prediction datasets of Scikit Learn into the 

environment and stores it within this variable boston. We take out the inputs and the 

targets, make the training and test splits and then, we have a similar evaluate on test data 

function. And over here, as this is a regression problem, as this is a regression problem, 

we do not have classification error, misclassification as our objective. 

So, what we are going to use is the mean squared error, the root mean squared error. So, 

we calculate it this way. So, first we initialize the sum of squared error, this variable as 0 

and then we calculate the square of the error. So, whatever number has been predicted by 

the system, so model dot predict x test will give the predictions for the test data and each 

prediction predicted value is subtracted from the true value and raised to the power of 2.  

So, this gives the squared error. We keep accumulating that within this variable and we 

get the sum of squared error and then finally, we calculate the mean squared error by 

dividing the sum of squared error by total number of points in the test set and then, oops, 

this should not be accuracy, let me remove this comment. So, the root mean squared 

error is given by np dot squared root. So, you find the square root of the error of the 

mean squared error and you have root mean squared error. 

So, this gives an estimate of how close the or how far away the predicted values from the 

regressor are from the true values and let us evaluate just two kernels over here. So, first 

we compile this part, and go ahead to the next part. So, we will evaluate the linear kernel 

SVM and the RBF kernel SVM in this section. Let me zoom down a little bit, okay, it is 

better now. 

So, in the RMSE vector, this thing is going to accumulate the root mean squared error 

values and first we will, we will, just like we previously we did. So, we take the kernels 

one by one, we fit the support vector depressor onto the, with the kernel on the training 

data and then, we calculate the root mean squared error by calling this function and we 

append this value to the RMSE effect and finally, print these values out. So, let us see 

how these work. So, we find that the RMSEs are 0.3774 and 0.34. So, in this case as you 

can see, that the RBF kernels works better and because it can fit more, it can, it can fit 

non-linear curve onto the data. 



And there are some more things that you can do with these models. For example, it can 

actually find out all the different. So, I will insert us one more cell below. So, I will show 

you something more, something else. So, let us take one of these classifiers, one of these 

models. So, we take the RBF SVC and we find out what all points were used as support 

vectors by these classifiers. 
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So, I will open the Scikit Kearn documentation, Scikit Learn. So, this documentation 

gives you a lot of resources. Something is wrong; yes there we go, yes. So, this particular 

attribute of a model, the support vectors underscore will give you the support vector. So, 

if we can go ahead and if you want to see what all points were used as support vectors, 

we can bring this here. So, we see can that so many support vectors. 

So, all of these points were used as support vectors and if we see if we check how many 

support vectors were used here, we can just find the length of this array and there are 70 

support vectors for the RDF kernel SVM. Whereas, if you just use the svc, if you check 

for the svc, there are 67 support vectors and they can be like found this way, just like 

remove the length, you will see all of those points that were used as support vectors.  

So, these are all the points from, all of these points are from the training side and these 



are the points, which define the decision boundary that the classifier is using and the 

polynomial one. So, poly svc is using, length of poly svc support vectors, if we can 

check there are 55 support vectors over here. So, these things and there are other 

attributes as well and a lot of attributes and the documentation of Scikit Learn is really 

good and all of these parameters. 

So, I will just open the, let me open, linear svc, just svc, yes. So, these are the different 

parameters of the model and you can have different combinations of them according to 

the need of the problem at hand like these things, these are the different, we use the 

support vectors. All of these different parameters of the support vector machine can be 

obtained by just invoking the corresponding attribute value. 

So, that is all for today. Today, we studied how to use the support vector machine module 

of Scikit Learn to have classifications and regressions and there are a lot of, like support 

vector machines are extremely sophisticated and extremely efficient machine learning 

models, and they have been the state of the art at a lot of different applications for a long 

time. And I would like to recommend you to go ahead and find other applications of 

support vector machines as well and try to understand, learn, learn, understand and you 

know, implement this particular part of this course that is the support vector machines 

and kernel machines and all of this theory very well. So, this is one of the most important 

sections of this course.  

See you next time, bye-bye. 


