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Good morning, this is the last lecture corresponding to SVM. We will very briefly 

discuss how we get a solution to the SVM problem. We have seen how we formulate the 

SVM as a quadratic optimisation problem and we came up with the dual formulation 

which has certain features which makes it easy to deal with kernel function, and we can 

solve this quadratic optimisation problem with the standard QP solver. But in fact, these 

with particular dual formulation it can be solved very efficiently and I will talk about the 

solution strategy in brief, an efficient solution strategy for dual SVM in brief, just to 

introduce you, but we will not get into very lot of details about this. 

(Refer Slide Time: 01:13) 

 

Now, the algorithm which can be used rather an algorithm which can be used for solving 

the dual problem is the SMO algorithm which stands for sequential optimisation. 



(Refer Slide Time: 01:22) 

 

In sequential optimisation what we do is that, we have a number of variables and we 

keep the rest of the variables fixed and we only optimise one or two of the variables with 

respect to the objective function keeping the rest of the variables fixed. Before we talk 

about the sequential SMO algorithm, we will look at coordinate ascent. In coordinate 

ascent what we do is that this is the general form of solving an optimisation problem. 

Suppose, the optimisation problem is given by general optimisation problem, you have to 

maximise the parameters alpha of a function and suppose these are your variables; alpha 

1, alpha 2, alpha n and you have to find the maximum value of this function with respect 

to alpha. 

Now, in coordinate ascent what we do is that we loop until convergence for i equal to 1 

to n. What we do is that we take alpha, we keep alpha 1 to alpha 1 minus 1 alpha i plus 1 

to alpha n that is we keep rest of the parameters fixed and find out that value of alpha i 

for which this value is the highest. So, we can write alpha i equal to that value of 

estimate of alpha i where this w you know. So, where we keep the rest of the alpha i is 

fixed and we only change alpha i and then we end. 

So, we can see, we can decide sequence of the alpha. Let us say, we will do first alpha 1, 

first optimise alpha 1 keeping alpha 2 alpha n fixed, we have find an initial value of 



alpha 1, alpha 2, alpha n which satisfies the constraint then we will keep the remaining 

alphas fixed and only change one alpha. So, that the value of this expression is optimised 

while satisfying all the constraints right we have some constraints also. So, these 

constraints must be satisfied and on satisfying this constraint, we find that value of alpha 

i for which this is the highest then i will keep this alpha i fixed and the rest of them fixed 

and take some alpha i plus 1 and we will change this. 

So, sequentially we will do the optimisation with respect to this parameters alpha. So, 

this is the coordinate ascent algorithm of course, the solution that we get may depend on 

the sequence in which we choose the alphas. 
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Now, this coordinate ascent algorithm can be visualised by in this slide. Suppose, here 

these different contours is ellipses are the different contours of the function right. So, 

initially suppose, I choose the value of alphas, so that I start from here, then I only 

change on one of the particular parameters right and we get here then we change in 

another parameter, we come here change in another parameter, we come here change in 

another parameter, we come here change in another parameter. 

So, these contours correspond to the value of the function and the value of the function is 



minimum here after starting from here by optimising on one of the attributes at a time. 

We make this steps and these steps are we can see are on paths parallel to one of the axis 

and until we get to one of the minimum or wherever we get in. So, this is the idea of 

coordinate ascent. 
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Now, this sequential minimal optimisation or SMO can be applied, we can see whether it 

can be applied to the dual formulation of SVM. So, if we look back at the dual 

formulation we are trying to maximise, find the values of alpha. So, the j alpha is 

maximised and j alpha is sigma alpha i minus half sigma alpha i alpha j y i j x i x j and 

these are the constraints alpha i is between 0 and c sigma i y i equal to 0. Now, the 

question is can we apply coordinate ascent directly here? Now, one of the things you 

notice is this constraints sigma i sigma alpha i y i equal to 0. 

Now, in order to solve this, what we have to do is first we have to come up with some 

values of alpha 1, alpha 2, alpha m. So, that these constraints are satisfied alpha i is 

between 0 and c and sigma alpha i y i equal to 0. Now, you notice from this is that if you 

have m minus 1 of the alpha i is if you fixed and you want to change another alpha i, you 

cannot because given m minus 1 values the other value is completely determined. So, 

you cannot independently change only one of the alpha i's. 



So, this algorithm where we sequentially optimised one attribute at a time cannot be 

applied to the solution of this particular formulation, but what we can do is that we can 

optimise with respect to two attributes at a time. So, we cannot update on only one 

attribute. 
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So, in the SMO algorithm, what we do is that we take two attributes at time to optimise 

them. So, this is the formulation that we initially choose a set of alpha i's, which satisfy 

all the constraint. Now, alpha 1 is exactly determined by the other alphas. So, what we 

have to do is that we update two of the attributes at a time. 
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So, this brings us to the SMO algorithm which can be used to solve the dual formulation 

of SVM. We repeat till convergence we select a pair alpha i and alpha j to update and we 

can use a heuristic to decide which alpha i alpha j pair to take, we can pick the two that 

allow us to make the biggest progress towards the global maximum to choose the alpha i 

alpha j to address next can be done based on a heuristic function. 

Now, after choosing this pair alpha i and alpha j i reoptimise w alpha with respect alpha i 

and alpha j, while holding the other alpha case fixed. Now, it can be shown that the 

updates to alpha i and alpha j can be computed very efficiently. We will not talk about 

those details in this class, but I just want to tell you is that if the m minus to alpha z 

fixed, we get some constraints on these two alphas and this particular optimisation 

problem of optimising alpha i and alpha j keeping the rest of them fixed can be done 

quite efficiently and based on that, we have an efficient sequential minimal of 

optimisation problem to find a solution to the dual formulation of the SVM 

With this we come to the end of our lecture on support vector machine. We have seen 

that support vector machines come up with linear decision surfaces and you change their 

formulation, so that you can accommodate noise and it is possible to convert a transform 

the original feature space to a new features space where the decisions surface are linear 



with respect to the new feature space. So, while having a linear decision surface you can 

also in affect have a non-linear function. However, the function that we have is linear in 

terms of either the original features space or the new features space. 

In the next week, we will study neural networks and we will see in neural networks we 

can have highly non-linear functions and for that we wait till next week. 

Thank you very much. 


