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Good morning, today we will continue our lecture on Support Vector Machine. In the last 

class, we saw how to do work on linearly separable data set. Now, in many cases there 

will be noise in the data, so that a linear decision surface cannot separate the positive and 

negative points. We will see how support vector machine can deal with it. 

(Refer Slide Time: 00:58) 

 

If we look at the linear SVM formulation that we did in the last class, we had this 

optimization function which required us to find the weight vectors, w and b such that the 

margin width is maximised. So, the margin can be written like this 2 by w. So, this is 

maximised subject to m constraints corresponding to each training instance. So, for each 

training point i equal to 1 to m, we had y i w x i plus b is y i times w x i plus b is greater 

than equal to 1. This can also be written as instead of maximising 2 by w, we can 

maximise its reciprocal that is half w. 

So, w is actually root over w dot w. So, we can minimise this, rather we can minimise w 



dot w. So, we can look upon it as a minimisation problem subject to m constraints 

corresponding to the m training examples. 

(Refer Slide Time: 02:56) 

 

Now, this particular formulation enables us to deal with only those training instances 

which are linearly separable, but it may be that the data is not linearly separable. 

(Refer Slide Time: 03:12) 

 



If you look at the slide, we see that we have two classes blue and red and this data cannot 

be linearly separable. There could be a non-linear decision surface which separates the 

data or in this case it may be that the data points are noisy. So, that there is no clear 

separation of the points. 

So, what we will like to do is we will like to extend the definition of maximum margin, 

so that we can allow these non-separable points. Now, we have to now redefine our 

objective function earlier. 
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We were trying to minimise w dot w this is no longer sufficient. So, we have to be able to 

have a decision surface which makes some errors. So, if we have the points these are the 

red points and these are the blue points. We want to allow making decision surface which 

does not clearly separate the positive and negative points. So, that there is some error in 

this, but if we have this error we cannot we cannot deal with these constraints that we 

have looked at, we have to make some changes.  

So, first of all we have to make changes to our optimisation function. So, one way of 

looking at it is we want a decision surface which looks at two things one is maximising 

the margin which corresponds to minimising w dot w, in fact we may say we want to 



reduce the number of miss classifications that is we want to minimise the miss classify 

training point or minimise the training error. 

So, we may be tempt at to write this objective function as w dot w plus number of 

training errors and maybe we can use a parameter c to control how much importance we 

give to this part and this part the problem with this formulation is that it is no longer are 

quadratic objective functions, so that we cannot use a QP solver to solve this 

optimisation problem. 

So, we have to look for an alternative formulation. In the alternative formulation that we 

look at, we do the following. We assume that given some points we are able to define a 

margin and then we try to; let me just redraw this. Suppose, this is my decision surface 

and this is a margin that we are looking for and these blue points may be here may be 

here where as the red point may be here. So, we can see that these point we have an 

error. So, this point the blue points ideally should be on this side of the margin. So, we 

can see that this blue point and this blue point are in error, where as this red point should 

be ideally on this side of the margin. 

So, these red points are in error right corresponding to each of the points which are not 

correctly classified assuming a particular decision surface and the corresponding margin 

for each such point, we can give a penalty and the penalty can be given proportional to 

the how far it is from its correct position that is if we take this blue point what is the 

minimum amount by which I have to move this point, so that it is correctly classified. So, 

this can be obtained by dropping up a perpendicular from this point to this margin. 

Similarly, for this blue point for this red point we have to move in this direction to get it 

correctly classified and for this we have to move it like this. So, what we will do is that 

with every miss classified point we will associate and error or penalty, which is the slack 

variable; suppose this is the point 1. So, we can associate is i 1 corresponding to this 

point z 2, corresponding to this point z 3, corresponding to this point z 4, corresponding 

to this point.  

So, these are the penalty that we are associating with the points which are in the wrong 



position the z values associated with the other points will be equal to 0. Now, we can 

rewrite our objective function as w dot w plus c times or the some of this penalty 

functions. So, we can write c times sigma z k. So, k equal to 1 to m, where m is the 

number of training examples. So, if you look at the slides here. 
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We can rewrite our formulation as minimising w dot w, which corresponds to a making 

the margin looking at the size of the margin plus c times distance of error points to their 

correct zones and we achieve it by adding slack variables z i. So, for each point which is 

miss classified we find its shorter distance to the correct zone and this corresponds to the 

z for that variable for the other variables which are correctly classified by this particular 

decision surface i values are equal to c. 
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Now, let us look at the slide. So, we have this is our decision surface whose equation is 

given by w x plus b equal to 0 and upon normalization these are the two margin lines w x 

plus b equal to plus 1 and w x plus b equal to minus 1 and here are the three points which 

are wrongly classified and corresponding to each of them, we have the variables z 1, z 2, 

z 3, the margin width is given by 2 by root over w dot w, which we want to maximise 

and which corresponds to minimising w dot w adding the penalty due to this slack 

variables we get the minimisation function to be w dot w plus c times sigma k equal to 1 

to m z k. So, this is what we want to minimise. 

Earlier the constraints that we had is y i w dot x i plus b greater than equal to 1. Now, 

you see that this constraint will no longer hold for those points which are in the wrong 

zones. So, we can rewrite this constraint as y k y i w x i plus b greater than equal to 1 

minus z k right for i equal to 1 to m actually for the blue points, which are wrongly 

classified we can write w dot x i plus b greater than equal to 1 minus z k and for the red 

points we can write w x i plus b less than equal to minus 1 plus z k and we can write it 

together as y i into w x i plus b greater than equal to 1 minus z k for i equal to 1 to m. So, 

this is the formulation of the maximum margin classifier, when we wish to handle noise. 

Now, in order to solve this equation we can find the Lagrangian of this quantity. 
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So, the lagrangian with parameters w b z alpha beta and we get it as half w dot w plus c 

sigma z i plus sigma i equal to 1 to m alpha i y i into x dot w plus b minus 1 plus z i 

minus sigma i equal to one to m beta i z i. So, actually there is another set of constraints. 

In this case, we have a set of m non-linear constraints and we also have m constraints z i 

greater than equal to 0 for i equal to 1 to m. So, we have two m constraints m constraints 

of this type and m constraints of this type and therefore, in the slide we can see the 

lagrangian of this quantity has half w dot w plus c sigma z i plus, please look at the slide, 

sigma i equal to 1 to m alpha i times y i x dot w plus b minus 1 plus z i minus i equal to 1 

to m beta i z i alpha i s and beta i s are the lagrangian multipliers and they are greater 

than equal to 0. 
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Now, given this lagrangian we can look at the dual formulation corresponding to this 

formulation. So, in the linear SVM, we wanted to find alpha 1, alpha 2, alpha m such that 

this quantity sigma alpha i minus half alpha i alpha j y i y j x i dot x j is a maximised and 

such that the constraints where alpha i greater than equal to 0, for i equal to 1 to m and 

sigma i equal to 1 to m alpha i y i equal to 0. In the case of noisy SVM this quantity 

remains the same, but the constraints change. So, earlier we had alpha i greater than 

equal to 0, we have now alpha i is between 0 and c for i equal to 1 to m, the second 

constraint remains the same. So, the dual formulation of this noise accounted SVM this 

constraint is changing alpha i is now lying between 0 and c the rest of the formulation is 

the same. 

Now, given this dual formulation we can find the solution to the classifier. So, this is 

called noisy linear SVM or most commonly this is called soft SVM because we do not 

have a hard classifier or a hard decision surface that clearly separates the positive and 

negative points. 
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And the solution of this soft margin classification will be similar to the solution that we 

got earlier. 

(Refer Slide Time: 15:34) 

 

For example, those data point whose, which have non-zero corresponding. Secondly, 

multipliers alpha i they will be the support vector and as you can see the support vectors 



will be those points which lie at the margin as well as those points which lie in the 

incorrect zone, and the solution to the dual problem is given by w equal to sigma i equal 

to 1 to m alpha i y i x i alpha i is non-zero only for those points which are support vectors 

and once we find the values of alpha i we can find the value of b from any one of those 

points. So, b equal to y k into 1 minus z k minus sigma alpha i y i x i x k. 

So, for any of this k we can find b after we are found the alpha i’s. For classification, 

now once we have found the solution of this equation we can use it for classification for 

classification again, we use the similar formula f (x) equal to sigma i equal to 1 to m 

alpha i y i x i dot x j x plus b. So, x is the test point and i corresponds to you know. 

Secondly, because to those point for which alpha i is non-zero, which are exactly the 

support vectors. 

So, again we see that in order to find the classification of a point, we actually do not need 

to compute w explicitly, but we can just apply this formula and in this formula we need 

to find the dot product of the test point with the x value of those points which are support 

vectors and multiply by the corresponding alpha i y i values sum it up and add b to this 

right. So, the formulation is pretty straight forward and quite simple and easy to apply. 

So, this is how we deal with soft classification or soft SVM. However, if the decision 

surface, we are able to account for noise and come up with classifiers which do not 

exactly separate the positive and negative points.  

However, the classifier decision surface is still linear and cannot handle those cases 

where the decision surface is actually non-linear, how to handle that in some cases we 

will see in the next class. 

Thank you. 


