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Good morning. We will now talk about Part C of this lecture, where we will look at The 

Dual Formulation of support vector machine. 

 (Refer Slide Time: 00:28) 

 

In the last class, we looked at the formulation of the optimization problem corresponding 

to support vector machine where we have to minimize half w square, this is the convex 

quadratic optimization function subject to this linear constrains y i w T x i plus b greater 

than equal to 1 for all examples. 
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So, before we look at how to get the dual of this particular formulation, let us very 

briefly talk about Lagrangian Duality. Suppose, we take a general primal general 

problem and its primal formulation is given by, this is an optimization problem where 

you want to minimize f w, w are the parameters. You want to find values of w, so that is 

to minimize f w and you have a set of linear constraints.  

There are two type of linear constraints, equality constraints - we have l equality 

constraints h i w equal to 0 and k inequality constraints g i w less than equal to 0, all 

these constraints are linear. Corresponding to this problem the generalized lagrangian is 

given by a function of w alpha beta, f w plus summation over 1 to k for all the number of 

non-linear constraints i equal to 1 to k alpha i g i w plus summation i equal to 1 to l beta i 

h i w, where h i w are the equality constraints, g i w are the inequality constraints. The 

alphas and betas are called Lagrange multipliers and the value of alpha is greater than 

equal to 0. 

So, this is the lagrangian of this optimization function. Now, what we want to do is that, 

we want to; so this particular lagrangian if you take the values of a w alpha and beta such 

that if the primal constraints are not satisfied then the value of this lagrangian will be 

infinity. If the constraints are not satisfied the value of the lagrangian is infinity and it 



will be equal to f w, if the constraints are satisfied right. So, we want to find out the 

values of alpha beta for which l; so if you look at the maximum of the value of l w alpha 

beta then if w satisfies the primal constraints, it will be equal to f w and it will infinity 

otherwise.  

And we can rewrite the primal, as finding the value of this expression max of l w alpha 

beta, we want to find out those. So, we first do maximize keeping w fixed for a particular 

w, we can maximize over alpha beta and find the expression max l w alpha beta and max 

l w alpha beta is either f w or infinity and if we find the minimum of this, it will be 

giving us the solution of this. Because, otherwise it has a value of infinity, so the primal 

can be rewritten as, you take the lagrangian and you find out alpha beta for a fixed w you 

can take maximization over alpha beta and then you can do minimum over w. So, 

minimum over w maximum over alpha beta, L w alpha beta is a rewriting of the primal 

formulation. 
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So, this is the primal problem and it has a solution let us say the solution is p star. P star 

is the solution of the primal problem - minimum over w maximum over alpha beta of the 

lagrangian and the dual problem is we are just putting the minimum here and maximum 

here. So, we take first, we take max of our alpha beta minimum over w, L w alpha beta 



this is the dual formulation and it has the solution d star. So, this is the primal problem 

solution, this is the dual problem solution and we have two theorems. This theorem says 

that first of all if you change the order of max min and min max, it is general expression 

that - max over min of this expression, any expression is less than equal to min of max of 

this expression, right.  

And d star is the max of min of this expression and therefore, d star is less than equal to p 

star. So, d star is always less than equal to p star. Now, if there exist a saddle point of this 

lagrangian where they are equal that is called the saddle point and that is the optimum 

value of both. So, the optimum value of the primal formulation and the optimum value of 

the dual formulation will be identical when there is a saddle point. 
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And if the saddle point exists, then the saddle point satisfies the following condition 

called KKT condition or Karush-Kuhn-Tucker condition. Now, the condition says that 

the partial derivative of this lagrangian, with respect to w i and with respect to beta i will 

be equal to 0, according to the KKT condition. And from these two, you will find out that 

what you get is that alpha i g i w will be equal to 0, for i equal to 1 to m, g i w is less than 

equal to 0 and alpha i greater than equal to 0. So, these are the conditions that you get 

when the saddle point exists.  



And the theorem says if w star, alpha star, and beta star, satisfy the KKT condition then it 

is also a solution to be primal and dual problems. With this brief description, brief outline 

of lagrangian duality let us go back to SVM and see how it can be applied there. The 

details of this theory are beyond the scope of this class and you can read some material 

on convex optimization if you want to learn more about this. 
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Now, if we look at our SVM formulation what we have is we have f w as half w square 

and we have the g w as y i w x plus b greater than equal to 1. We do not have the h, we 

do not have the equality constraints, we have only the objective function and the g i 

constraints. So, we are only dealing with alpha i, not the beta i. So, we are dealing with f 

w plus alpha i g i w.  

So, this KKT conditions also says that this alpha i g i w equal to 0 and g i w is less than 

0, it is because alpha i g i w is 0 only when alpha is 0 then g i w can be non-zero, and 

otherwise, g i w is . And which says that only the few of the alpha i's can be non-zero and 

the training data points whose alpha i's are non-zero are called the support vectors. So, 

some of the alpha is are non-zero and the training data corresponding to data support 

alpha is greater than equal to 0, if alpha i greater than 0, g i w will be equal to 0. 
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Now, let us see the implication. So, this is the original optimization problem and when 

we take, this is the SVM optimization problem we take the lagrangian which gives us 

minimization of l w b alpha, we have written L p - p denotes primal. So, minimize L p w 

b alpha, half w square minus sigma alpha i y i w i x i plus b minus 1, subject to the 

constraints alpha i greater than equal to 0. This is by getting the lagrangian of the 

optimization problem. 
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Now, if we take the partial derivative of this L p with respect to w and b what we get here 

is, w equal to sigma alpha i y i x i, and from the second one by taking partial derivative 

of L p with respect to b and setting it to 0 we get sigma alpha i y i equal to 0.  

So, what it means is that if I substitute this value of w in this expression here, if I 

substitute this value of w sigma alpha i y i x i in this expression here what I get is L p w 

b alpha equal to sigma alpha i minus sigma alpha i alpha j y i x T x j. I am sorry. So, we 

put w is here, so this w becomes half of alpha i alpha j y i y j x T x j minus b sigma alpha 

i y i. So, this is my L p when I substitute this value of w. But we know that sigma alpha i 

y i equal to 0 from this constraint. So, this expression on the rights side can be ignored 

and finally, we get L w b alpha as this expression. 

So, L w b alpha is sigma alpha i minus half of i j equal to 1 to m, alpha i alpha j y i y j x i 

transpose x j. Now, this very important formulation and we will look at the properties of 

this formulation to get certain properties of the support vector machine algorithm. 
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So, the Dual problem, before we go to that let us look at the dual problem the dual 

problem is maximizing of j alpha where j alpha is the expression we saw earlier and 

these are the constraints alpha i greater than equal to 0 and sigma alpha i y i equal to 0. 

This is the dual problem, which is a quadratic programming problem and from this 

quadratic programming problem we can solve and find the global maximum value of 

alpha i. We can find out the values of alpha i, by solving this quadratic programming 

problem. 
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And this quadratic programming problem is much easier to solve than the primal 

formulation. This is much simpler, because the constraints are simpler and we will see it 

has certain nice properties. 

So, once we solve and get the lagrange multipliers alpha, we can reconstruct the 

parameter vectors. We can find w as sigma alpha i y i x i. In fact, we noted that alpha i is 

non-zero only for few of the examples. Those examples are the one, once which are the 

support vectors. So, w is obtained from sigma alpha i y i x i where i ranges among the 

support vectors and usually the support vectors are few in number and w can computed 

from the coordinates of those support vectors.  

Also when we get a new data point z in order to find out the output corresponding to this 

we can compute w T z plus b, which is alpha sigma alpha i y i x i T z plus b and we 

classify z as class 1 if the sum is positive and class 2 if otherwise. Now, you note that w 

need not be found explicitly we can just use this expression and this expression has a 

very nice property when you put z what you are doing is - this alpha i, this is y i, this is x 

i T z. So, you are taking the dot product of the support vector with your test point. 
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So, the discriminant function is given by this dot product of x i T and x right. So, the 

computation reduces to mainly finding these dot products. So, you have the dot product 

between the test point x and the support vector x i. Why is this, such an exciting thought? 

Now, x i is a vector and this can be a high dimensional vector, if you take the dot product 

of these two linear vectors what you get is a scalar. So, the dot product is a scalar value.  

And we will look at what are the implications later, when we solve the optimization 

problem also, if we look at this formulation where we solve the optimization problem. In 

here you see what we have is the dot product of the training points, so alpha i alpha j y i 

y j is either plus 1 minus 1. So, these are very simple to compute multiply and x i T x j 

the dot product of x i x j. So, when we solve the optimization problems it involved 

computing the dot products between all the pairs of training points and the optimal w is 

linear combination of a small number of data points. So, these are some of the features 

about this SVM formulation.  

We stop here today, in the next class we will look at certain properties of SVM and how 

these properties can be used for those formulations of SVM. With this I end today's 

lecture. 

Thank you. 


