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Today in this module, we will study about Support Vector Machine and also before that 

we will have a brief lecture on Logistic Regression. So, this is part A on Logistic 

Regression. So, in previous class in the second week, we have talked about linear 

regression which is used for our regression problem. 
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But, if you have a classification problem you cannot use linear regression. We want to 

see what is a simplest way in which we can handle our classification problem? In a linear 

regression, we had our hypothesis function h (x) as sigma beta i x i, i equal to 0 to n 

when n is the number of a predictor, number of variables. So, we have h (x) i equal to 

beta 0 plus beta 1 x 1 plus beta 2 x 2 plus beta n x n and learning involves learning the 

values of this beta i in order to optimize a certain function, for example, we try to 

minimize the sum of square errors.  



Now, suppose we have a classification problem that is we have different training points 

and they are positive and negative and we want to have a classification of them, we want 

to say when they are a positive and when they are negative. 

Now, this function will give a real value and it is not appropriate for classification, but 

what we can do is that based on this linear function, we can apply another function on 

this linear function so that we can use the result for classification. So, one of the ways we 

can do it is, in logistic regression we use the logistic function or the sigmoid function for 

this task. Now, first of all let us look at what is the logistic function or the sigmoid 

function it is given by this formula g (z) equal to 1 by 1 plus e to the power minus z and 

this formula this function has the following profile. 

Suppose this is 0, this function has this type of shape, roughly this as this type of shape. 

The value of this function varies between 0 and 1 at z equal to 0.5 the value is 0; as z 

tends to infinity, the values tends to 1; as z tends to minus infinity, the value tends to 0 

right. So, this function gives the value between 0 and 1 and how we can use it for 

classification, we can say that we have a function if the output is greater than 0.5 it is 

positive, if it is less than 0.5 it belongs to the negative class. 

So, just like in regression we use this function for classification using logistic regression 

we will use this function h beta x is; we will apply this function g this function is also 

called the sigmoid function, we can refer to as sigma z. So, we will apply this function g 

or sigma to sigma beta i x i. So, sigma beta i x i can also be written as beta transpose x 

more compactly using matrix notation, we can write h beta x for classification as equal to 

g beta t x which is equal to 1 by 1 plus e to the power minus beta t x. So, we can use a 

linear function of beta, pass it through the sigmoid function and use it as for a 

classification function. Now, let us looks at certain properties of this sigmoid function 

which makes it very attractive to use. 
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So, as we have seen g (z) tends to 1 as z is after sometime it becomes 1 as it 

asymptotically stays at 1. So, as z tends to infinite g (z) tends to 1 and g (z) tends to 0 as 

z tends to minus infinite then a very attractive feature of this function is if you take the 

derivative of this function . So, the derivative of this function you can take as, you have 1 

by 1 plus e to the power minus z let us take the derivative. So, g dash z equal to d d z of 

1 by 1 plus e to the power minus z which is 1 by 1 plus e to the power minus z whole 

square into e to the power minus z. 

So, we do a change of variable this is 1 by x which is 1 by x square and by taking the 

derivative of this part we get e to the power minus z. So, g dash z is e to the power minus 

z times 1 by 1 plus e to the power minus z whole square and we can simplify this to write 

it as we can do some manipulation and we can write this as let me write it where you can 

see. So, this can be written as 1 by 1 plus e to the power minus z times 1 minus 1 by 1 

plus e to the power minus z which is simply equal to g (z) into 1 minus g (z). So, the 

derivative of g (z) can be written as g (z) times 1 minus g (z). So, the derivative is 

extremely simple to compute and this is a property which makes it attractive to use this 

logistic function or sigmoid function. 

So, when you are using this logistic function based on this we can look at the conditional 



distribution of generating the data. So, suppose you have the input x you want to find out 

what is the probability of y given x, if y equal to 1. 
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So, we can write this as h (x). So, if y equal to 1 h (x) is the probability and if y equal to 

0 the probability is 1 minus h (x). So, we can write probability y distribution of y given x 

as h (x) to the power y 1 minus h (x) to the power 1 minus y if y is 1, 1 minus y equal to 

0 and this factor will not be there this factor will be 1. So, we have h (x) if y equal to 1 

and probability y given y given x probability y equal to 0 given x is here y is 0 and 1 

minus y is 1. So, we have 1 minus h (x). So, it can be given here and h (x) has we have 

seen equal to 1 by 1 plus e to the power minus beta transpose x. 

Now, given this function we can now try to learn this function by using gradient assent 

just like. So, we want to maximize this function and we can use the gradient a decent 

method, asset method as we have used in linear regression. So, in logistic regression we 

need to learn the conditional probability distribution probability y given x. So, this is 

what we need to learn.  

Now, suppose our estimate p y (x) beta are the parameters p y (x) is our estimate of 

probability of y given x and beta is the vector whose value the beta are the set of 



parameters whose values we have got to learn . Now, what we will do is that we will do 

stochastic gradient descent for that we assume a single training example and with respect 

to the training example we will do the radiant descent. So, in order to do that we first 

define the likelihood of the data, what we have to do is. 
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We have to learn the optimal values of beta and we use the maximum likelihood 

approach we find out what is the likelihood of beta. So, the likelihood of beta is the 

probability of observing the data given beta were the actual parameters. So, the 

likelihood of beta can be written as probability of the y given x parameterized by beta 

and because we have m training example this is product of for each training example, we 

find the probability of y i given x i beta. 

And this as we have seen is product of i equal to 1 to m h (x) i to the power y i times 1 

minus h (x) i to the power 1 minus y i. So, we have got to find beta. So, that this 

expression is maximized now whatever maxi. So, all the probabilities are positive. So, 

whatever maximizes this expression will also maximize the log of this expression and in 

order to make our computation simpler, we take the log likelihood of respect to beta.  

So, small l of beta is the log likelihood given beta and it is given by log of likelihood of 



beta, which is summation i equal to 1 to m y i log of h (x) i plus 1 minus y i log of 1 

minus h (x) i. So, this is by taking logarithm of this expression we get the likelihood of 

beta. Now, we have to maximize this likelihood and in order to maximize this likelihood 

we do gradient asset. As we know that when we try to maximize this function we can 

take the derivative, let me rub this. So, we have this function here, which we want to 

maximize. 
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So, what we will do is that, we will take the derivative of this function and so, we will 

start with some initial value of beta. We will start with initial value of beta and we will 

update beta as follows beta equal to initial beta plus some alpha, alpha is the learning rate 

times the derivative partial derivative with respect to beta of the log likelihood of beta. 

So, this is how will update beta iteratively by using gradient asset and we can do it 1 

example at a time if you are using stochastic gradient asset. 

Suppose we have a single training example x y. So, x y is a single training example based 

on this training example and the current beta we want to find out what the next beta will 

be for that we find the derivative of this likelihood and we try to based, we find the 

derivative and we take a step towards the derivative. So, let us take the derivative of this 

expression. So, if we take the partial derivative of l beta, which is the function that we 



have given here and what we get is y times 1 by g beta t x minus 1 minus y 1 by 1 minus 

g beta t x times del del of beta j g of beta t x. So, on simplification, on manipulation of 

this, what we get is y 1 by g beta t x minus 1 minus y 1 by 1 minus g beta t x times, 

expanding this part, we get 1 minus g beta t x del del beta j beta t x from which we get y 

times 1 minus g beta t x minus 1 minus y g beta t x times x j. 

Now, we have use the fact that g dash x is equal to g (z) times 1 minus g (z) and we get y 

minus h beta x x j. So, upon simplification we get this as the partial derivative of the log 

likelihood of beta y minus h beta x x j. So, plugging in this formula here what we get 

finally, is beta equal to original beta plus alpha times, we had partial derivative with beta 

with respect to l beta which we get is this, alpha times y minus h beta x times x j. So, this 

is the value of the jth component of beta. So, beta j equal to beta j plus alpha times y 

minus h beta x times x j this is the change that we make for a single training example x j 

a x y. 

So, given a training example x y, we do the partial derivative of this and we find out this 

is our like log likelihood of beta, we take the partial derivative of the log likelihood of 

beta and we have worked this out here after some manipulation what we get that it is 

equal to y minus h (x) times x j and plugging it in to this formula we get, how we can 

update beta j beta j is the jth component of beta beta j equal to beta j plus alpha times y 

minus h beta x into x j. So, this is the formula by which we can do stochastic gradient has 

not and we will find the right values of beta which we can use for logistic regression. 

With this we come to the end of today’s lecture. 

Thank you very much. 


