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Hello everyone. Welcome to the third to the hands on the session of the Introduction to 

Machine Learning course. I am Anirban Santhara, and I am doing my PhD in Machine 

Learning. In this session, we will learn how to use Naive Bayes classification algorithms 

for classification of emails as spam or non spam. 

(Refer Slide Time: 00:37) 

 

First, let us look back at what naive bayes classification algorithm looks like and how it 

works. Say we have an input vector N and it has n components and we have to predict 

one of k classes and we denote these classes as C k. Now, how do we go? We try to find 

which class has the highest posterior probability given the input feature vector X, and the 

class that has the highest probability is output as the target class for the example X. 



(Refer Slide Time: 01:16) 

 

Now, the problem at hand is to classify emails as spam or non spam. 

(Refer Slide Time: 01:22) 

 

And now let us see, how naive bayes classifier like how it really it would like works. So, 

C is the target class for the given example X, and this is going to be output as the class C 

k which is going to have the highest posterior probability given X, so that is given by the 



Argmax function. It is going to check which value of k is giving the maximum P of C k 

given X. Now by base rule this can be broken up as, so I have expanded x as x 1 through 

x n the vector and this can be written as the likelihood of the vector x given the class C k 

times the prior probability of the class C k divided by the evidence of the vector X. 

So, these are the terms from the base rule, and now the naive bayes classification 

algorithm. The naive bayes algorithm assumes that the input feature dimensions are 

conditionally independent given the class C k. So that is we could write this as the 

product over each x i given C k. This conditional independent assumption is what naive 

bayes algorithm is all about; naive bayes rule is all about. So this makes the classification 

algorithm the implementation of bit easier, the estimation a bit easier. 
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Now, how is this relevant in the context of spam classification? The problem at hand is to 

classify and email as spam or non spam given features of the email message. And you 

have seen a second what kind of features can be used to qualify and email which would 

make it distinctive for a class spam classifier. 

So, the probability of spam given features of a message is what we have to estimate, and 

this is actually the posterior probability of the class spam. Now this can be decomposed 



by base rule as the likelihood of the features of the email message given then it was a 

spam message times the prior probability of spams divided by the features of the 

message, all right probability of the features of the message, and divide by naive bayes 

condition we can assume that the different features of the message are conditionally 

independent given that the class is already known to be spam. So this conditional is 

independence assumption is what naive bayes rule is all about. 
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On the data is that we will be using is an open sourced data set from the UC Irvine 

Machine Learning Repository. It is available for free in the URL that you can see on this 

screen. It has 4601 example cases, 39.4 percent of that a spam, the rest are non-spam. 

And the each email is represented as relative frequencies and see how this is quantified. 

The related frequencies of 48 key-words and these key words are like, “free”, “money”, 

these are the key words that appear very often in spam emails, so that increases the 

likelihood of the email to be as being a spam message. And also some characters like 

exclamation dollar these, so 6 such characters and 3 run length attributes. So we would 

not be consider the run in the attributes and we will be concentrating only on the first 54 

features. 
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The representation of an email is important, because that is what would make naive 

bayes to be applied in a proper way. So, how do we represent an email message? We 

represent it in a form which is called a Document Vector. It is a vector and each element 

of the vector is an indicator of whether a particular word is present or absent. Say for 

example, the first position represents money, the first element represents whether the 

word money is present or not. And, the second one represents whether the word free is 

present or not. And that is how we get a binary vector of size the number of features that 

we want to choose. 
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Now, let us go ahead and make our training and test splits as we do always before taking 

of any machine learning study. And that the just to remind you that in this particular 

session unlike the others the previous ones we will not be using a scikit learns in built 

functions, we will be coding down the entire execution by ourselves so that we get a 

complete understanding of how the system works. It is really simple and it will not take a 

much labor. So, first we go ahead and we load our data and as you can see and then we 

set that the number of features that we are interested about are just 48. 

So, I am sorry we are going to consider the special characters also. We just use the word 

frequencies in our exercise. So, the data is separated into the inputs and the labels as you 

can see over here, and then we make our training and test splits. The train test split 

function is coming from a sklearn dot cross validation. That is the only function that we 

use from scikit learn and nothing else, the rest we code at code down our self's. 
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So, next we will look at how to estimate the class specific likelihood ratios. The 

likelihood ratios are represent that how probable is one feature given the email belong to 

a particular class. Say we have a spam email and we have a word w, so we want to find 

how likely the word w is given that the email was spam email. So, how do we estimate 

it? We just estimate it from the frequency definition of probability. We just count how 

many times the word w appeared in spam emails and then divided it by the count of like 

all words submit over all words in the vocabulary occurring in spam emails. 

So, this is how we calculate. We find how many times this particular word appeared in 

the spam emails and divided by odd words like, the entire size, the entire sum over all the 

sizes of all the spam image that we have in our data base. 
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Then what we do? So, how do we really implement it in our case, like the way our data 

appears, how do we do it? In our data set each email is represented as a vector and each 

position of which shows the relative count of the word in the emails. Say, we are talking 

about a particular word w I, so the vector will contain the number of times the word w i 

occurred in the email divided by the total number of words in the total number and it 

multiplies it by 100 to make a percentage. So whatever number it appears over here this 

shows that if 100 words that represent in the email then how many of the words would be 

the word in question that is w i. How do we get use this information to calculate this is. 

So, as you can see that this is supposed to be summed over all the spam emails in the 

data base right and we get email y's the ratios same thing in a percentage form in each 

vector for each email. So what we do is, we look at all the spamming emails in our data 

base, and then average these counts. And of course, we divide the number which we get 

after averaging by 100 so that we get a fraction between 0 and 1 of probability value, and 

what we have other likelihood ratios. 
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So how do we do it in code? First, we segregate the two classes. So, first we separate the 

class 0 and class 1; so class 0 represents that the email is not spam, class 1 represents the 

email is spam. And then we calculate the mean along the columns. As we shown in the 

last slide,we are calculating the means over each column. So that is why access equal to 

0 and divided by 100 to convert the percentage into a probability. 

Then, we would like to find the log likely hood ratio instead of using the likely hood, 

because as you saw over here in this slide. You can see that we are doing a sum a product 

over the likelihoods of the different feature dimensions. So, each of these number is a 

number of which is much less than 1 in most cases and you multiplies a small numbers a 

lot of them together and this may result in underflow, you might end up with a very very 

small number of which is not possible to represent a in your computer properly. So, that 

leads to errors and other problems down the line. 

So, that is why we avoid multiplications. We convert all probabilities into log 

probabilities, that is all likely hood into log likelihoods and sum the likelihoods instead 

of multiplying them. This is just a hack, popular hack in machine learning. We just 

calculate the likelihoods, so log likelihoods and this function does the same. If class 0 it 

will use the likelihoods of class 0. And what it does is, it takes a feature vectors. This 



feature vector is in the form that we discussed before over here. It is a binary vector 

representing which vector is present or not which word is present, which of the key 

words is present. 

So that is the feature vector and you specify that yeah we want to find the likelihood of 

these feature vector given a particular class. This class is going to take values either in 0 

or 1. And, what we do if the class is equal to 0, then for each feature index what we do 

we calculate the likelihood of that particular feature given that class. And if that feature 

is absent we calculate one minus likelihood, so the feature is absent. 

So, you must takes some time and carefully look at the code and tries to understand that 

why things are happening the wave it is written there, so that is the good exercise. After 

we have found the likelihood ratios, the log likelihood values what we do. 
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We find the prior probabilities of the two different classes. So, how do we calculate the 

prior probabilities? We just calculate by the frequency definition of probability. We 

calculate how many emails in the data set where spam, and how many have non spam, 

and then we just simply find the ratios. For example the say C k is spam and probability 

of spam mails will be number of spam mail in the data set divided by the total number of 



emails in the data set. 

We also perform log priors; we take the log of the prior probabilities just to make the job 

easy for us because we are just going to add them to the likelihood ratios. 
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And then the log likelihood values rather, sorry Next, after doing this we will go ahead 

and see how to do map inference. Map stands for Maximum Aposteriori Probability 

inference. This just (Refer Time: 14:03) means that we are going to choose the class that 

has the maximum aposteriori probability given the input value. So, we are going to 

choose the argmax over k's, we going to choose the class that has the maximum 

aposteriori probability given the input vector and so we decompose that in using the base 

rule. 

As you can see that, this k does not appear in the denominator, so this term is going to be 

the same for all classes C k. This thing is actually can be removed, because this is same 

for all classes C k. So as we are finding one which is the class which is looking for class 

has the maximum value of this term we can as well look for that particular class C k that 

has the maximum value for just for this product. And when we use like log likelihoods 

then this product becomes a sum and that makes our life simpler. 



(Refer Slide Time: 15:05) 

 

So, now we go ahead and calculate the class posteriors. For calculating the class 

posteriors we again show the feature vector, the binary vector that we talked about 

representing which particular feature is present or absent or which particular word is 

present or absent. And then the log posterior of each class will be the sum of the log prior 

and the log likelihood, and we return them. Another function classifies spam it takes 

document vectors, so the document vector is the one that was presented originally in the 

data set which give the relative frequencies of the words. 

So, we just going to check whether the element was greater than 0 in that particular 

vector, and if it is going to be greater than 0 this means the word appeared in the 

particular email and that is why we just said that element will equal to 1. This is what it 

does. It converted into a feature vector and then we calculate the log posteriors using this 

function. 

And we return class 0, that is not a spam if the aposteriori probability of not a spam be 

greater than aposteriori probability of it being a spam email otherwise we classify it as a 

spam email. So, this is how we solve the problem, how we use naive bayes classifier for 

detection of spam. 
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And, evaluation shows that it gives 89.23 percent classification accuracy and that is quite 

compiling. And this function will check how many of the predictions match the ground 

truth labels. So, it is checking whether the predictions are same as the ground truth and it 

calculates the accuracy. You just print the value, and thus you can use naive bayes 

algorithm for classifying emails as spam on non spam.  

So, I hope that was enjoyable. See you in the next video, bye-bye. 


