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Good morning. Welcome to today’s lecture. Today we will talk about Bayesian learning 

which is Part B of module 4. In the last class, we gave a crash course on probability and 

today we will see how probability is used for learning especially for classification, 

probability how it is used for modeling concepts.  
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So, Bayesian probability is the notion of probability which talks about partial beliefs. So, 

Bayesian probability talks about probability interpretation as partial beliefs and Bayesian 

estimation, it calculates the validity of a preposition. The validity of the preposition is 

calculated based on two things; number one the prior estimate. It is based on the prior 

estimate of its probability and in fact, new evidence, and new relevant evidence. Based 

on this, the posterior Bayesian estimation is done and the key to this is an important 

theorem called Bayes theorem which we will introduce now. 
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So, Bayes theorem deals with how to find the probability of a hypothesis given the data 

you have different possible competing hypothesis and you can find out the probability of 

the individual hypothesis given the data, so that you can find out which is the most 

probable or most likely hypothesis according to the Bayes theorem probability.  

If hypothesis given data is given by probability D given h times prior probability of the 

hypothesis h divided P D. This is very easy to derive you know that by the law of 

products, you can see that probability h D equal to probability h times probability D 

given h and you can also because it is commutative; this is also equal to probability D h 

which is equal to probability D times probability h given D. So, if you consider these two 

equal, then by manipulating them you can come up with Bayes role. So, Bayes role is the 

most important formula form which we can look for at Bayes learning. So, P h is the 

prior probability of the hypothesis h. So, this is the prior probability. 
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Probability D given h is the probability of the data. If the hypothesis is true, what is the 

likelihood of that data being generated? If h was true what is the probability of D being 

generated and P D is the likelihood of the data. So, based on this, we have Bayes 

theorem. Now, let us see an application of Bayes theorem for this we may look at the 

slide. 
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Suppose you want to know whether a patient has cancer or not. So, this particular 

example is taken from Tom Meshes. Secondly, machine learning a patient takes a lab test 



and the result is positive. Now, the test returns a correct positive result in only 98 percent 

of the cases in which the disease is actually present and a correct negative result in only 

97 percent of the cases in which the disease is not present.  

Furthermore you know that 0.008 of the entire population have this cancer. So, we can 

write down this as probability of cancer that is the prior probability of cancer among the 

population is equal to 0.008 and therefore, probability of not cancer equal to 1 minus 

0.008 that is 0.992. Now, what is the probability of the test being positive given that 

cancer is present? If this is given us 0.98 by this statement of the problem also 

probability of therefore, the probability of the test being negative given cancer is equal to 

1 minus 0.98 that is 0.02. What is the probability of test being positive given not cancer? 

This is given by 1 minus 0.97 that is 0.03. Similarly probability of not given cancer is 

given to be 0.97. 

So, these are the values that are supplied to you in the problem. Now, based on this we 

can use Bayes theorem. We want to find out the probability of cancer. The hypothesis is 

that the patient has cancer given that the probability that the patient has a cancer. 
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Given that the test is positive, this is given by probability of positive given cancer times 

prior probability of cancer divided by probability of the data. Similarly you can write 

probability of not cancer given that the test is positive equal to probability of test being 



negative given cancer times probability of not cancer times probability of the data and 

now, you can put the values here.  

What is probability of plus given cancer? It is 0.98. So, this is 0.98, this is 0.02 whereas, 

probability negative given cancer is 0.97, not sorry 0.03. So, this is 0.03 times 0.992. So, 

probability cancer given the test is positive is 0.98 into 0.002 divided by P D probability 

not cancer given the test is positive is 0.03 times 0.992 given P D divided by P D. Now, 

divide by P D this denominator is common to both the expressions. Secondly, probability 

of having cancer is proportional to 0.98, 0.02 and not cancer is proportional to 0.003 into 

0.992. Based on this, you can figure out the probabilities. 

So, this plus, this will sum to 1 and you can find out that this is more likely. So, it is more 

likely that the patient does not have cancer given this. So, this is an application of Bayes 

theorem. 
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Now, the goal of Bayes learning; now, can Bayes theorem we apply it to find a 

hypothesis in machine learning. So, based on the Bayes theorem, we can find out the 

most likely hypothesis which is called the maximum posterior hypothesis. 
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So, the map hypothesis is given by that value of h for which probability h given data is 

maximize. Now, by Bayes theorem, this is same as that hypothesis. We just expand this 

by Bayes theorem. We get probability D given h times probability h divided by P D. So, 

now, h capital H is the hypothesis space and small 8 out of all hypothesis in the 

hypothesis space, you want to find that hypothesis for which this expression is 

maximized.  

Now, P D is independent of the particular hypothesis. So, we can say this is the same 

hypothesis for which this part is maximized. So, the posterior hypothesis, posterior 

probability is given by probability D given h proportional to probability D given h times 

D h and the maximum. Posteriori hypothesis is one for which probability D given h 

times P h is maximum. This is the prior probability of the hypothesis and we choose 

hypothesis based on their posterior probability. 

Now, in the event if for all hypotheses, the probability is equal, then you choose that 

hypothesis for which probability D given h is maximum. So, 8 m l is the maximum 

likelihood hypothesis. It is applicable in those cases where the prior probability of all 

hypotheses is equal. That is initially before you have any data. The entire hypothesis are 

equally probable, in that case you choose the hypothesis for which the probability D 

given h is maximum; so the application of Bayesian theorem, in order to find out 

maximum a posteriori hypothesis and the maximum likelihood hypothesis.  



Now, we will see an example of how in a finding the least squared line, we can apply the 

Bayes theorem to find out the most likely hypothesis. So, suppose you have to learn a 

real valued function. 
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We have already talked about leaner regression which can be used to learn a real valued 

function and suppose the data is generated in the following fashion. So, there is a target 

function f. F is the target function and the individual data are generated. So, the data is 

given as x i D i are the individual data points and D i is generated as f x i plus epsilon i.  

Epsilon i is the error and we assume that this error follows a normal distribution with 

mean zero and a standard deviation sigma. So, we can think that D i is coming from a 

normal distribution whose mean is f x i and whose error is given by sigma square, where 

sigma square is the variance corresponding to this error term. So, this is how the data is 

being generated and let us assume that epsilon i is independently generated for the 

individual instances where epsilon i are independent for in different instances, and it is a 

Gaussian with zero mean and variance sigma square and therefore, we can say that data 

is generated as normal distribution f x i sigma square. 

So, what we have is that this is our x and this is our d, suppose this is the true function. 

So, this is f x and the data that we get are let us say generated like this. So, these are the 

data points that we have. Now, we have to find a function which estimates f. Now, how 

do we find this function? Let us say we use the maximum likelihood hypothesis.  



So, what is h m l? H m l is the maximum likelihood hypothesis which is given by that 

hypothesis for which probability D given h is maximum. Now, what is this? This is this 

arg max h and probability D given h is given by product. Over all the training examples 1 

by route over 2 pi sigma square e to the power minus half D minus h x i whole square by 

sigma because they follow the Gaussian distribution. Now, this can be written as let me 

rub out this portion of the board, so that we can write this formula here. 
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So, this turns out to be Arg max h. So, that function which maximizes this product is the 

same as which maximizes the sum of the logs. So, we convert it to the log do mine which 

is summation i equal to 1 to m, where m is the number of training examples half l n. So, 

we have taken logarithm of this part. So, it is half l n. So, minus half minus half l n 2 pi 

sigma square minus half D i minus h x i by sigma whole square by taking logarithm, we 

can get this, so by simplifying what we get? It is that function for which sigma i equal to 

1 to m D i minus h x i whole square is minimized.  

Why? It is because this part is constant. When I am taking the hypothesis for which this 

expression is maximized, this part does not play a role because this is constant. So, this 

part plays a role which arg max hypothesis minus of half by D i minus h x i by sigma 

whole square. So, half we can ignore because whatever maximizes minus half of that 

also maximizes only this part. So, if you want to maximize negative of this, it is the same 

of minimizing the positive part of this. So, it is that hypothesis, the maximum likelihood 



hypothesis for this linear regression problem is that hypothesis for which D i minus h x i 

whole square is maximized and this is exactly the least square criteria. 

So, based on this, we will get a function and that function could be something like this, 

but this is that function for which the sum of square errors is maximized. So, this is the 

Bayesian explanation to why we would choose a sum of square error to minimize in 

order to find out the linear regression. Now, next we will study about what is bayes 

optimal classifier. 
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Now, the question is suppose we are given some training data which each of the training 

instances we are given the class that it belongs to, then we are given a test instance and 

we are asked what is the optimum classification of x. The live answer would be that you 

find out the most probable hypothesis using the map criteria and then, you apply that 

hypothesis to the test example, but this is not necessarily the case. So, if you are given 

the training data form, the training data we learn h map. So, h map is the most probable 

hypothesis, but h map is not the most probable classification.  

For example, suppose h1, h2, h3 are three candidate hypothesis belonging to the 

hypothesis space and suppose probability h1 given D is 0.4, probability h2 given D is 

0.03 and probability h3 given D is 0.3. So, which is the map classifier? H1 is the map 

classifier because it has the maximum posterior probability.  



Suppose we are a new data x and suppose h1 x is positive, h2 x is negative, h3 x is 

negative, what is the most probable classification? The most probable hypothesis is h1. 

H1 is saying that x is positive, but h2 and h3 both are saying that h is negative. So, the 

most in this case, the most probable classification would be actually negative because the 

sum of the probabilities of these two hypotheses is 0.6 which is larger than the 

probability of this hypothesis is 0.4.  

So, what we have is, we have what we call the Bayes optimal classification. In Bayes 

optimal classification for a particular example we take the class to be. So, the capital V is 

the set of all possible classes, u hypothesis your algorithm will output that class included 

in all the classes for which the summation over all the hypothesis included in the 

hypothesis space probability v j given h i times probability h i given D is accepted. So, 

this is called the Bayes optimal classifier.  

Bayes optimal classifier will output that class for a classification problem for which if 

you take summation over the entire hypothesis space of probability v j given h i times 

probability h i given D that will be maximum. So, in order to find out the Bayes optimal 

classifier, you have to for that test instance, you have to apply the possible hypothesis on 

that test instance in order to find out the bayes optimal classification. This is the optimal 

classifier, but this turns out to be interactive. So, we can quickly look at the slide here. 
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So, the Bayes optimal classification is given by that v j for which sigma h included in 

capital H. Secondly, this is maximum and this is an example in that we can work out 

which you have seen probability h1 given D is 0.4, h2 given D is 0.3, h3 given D 0.2. 

Therefore, probability negative given h1 is zero negative, given h 2 is one probability 

negative, given h 3 is 1 and probability plus given h 1 is zero and if you apply the bayes 

optimal classifier, we see that probability of plus is 0.4, probability of minus is 0.6.  

So, why is this called optimal? It is optimal in the sense that no other classifier using the 

same hypothesis space and same prior knowledge can outperform this on the average. 

So, this is called the bayes optimal classifier, but as you can see since typically the size 

of the hypothesis space is huge, it is not possible to apply the bayes optimal classifier. 

So, we have to use some approximation of the bayes optimal classifier and for that we 

can use Gibbs sampling. 
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So, what we do in Gibbs sampling is that instead of applying all possible hypothesis on x 

v sample from the hypothesis space, we choose a hypothesis randomly according to 

probability h given D. So, for each hypothesis we have a probability associated with it. 

So, we have a probability distribution over the hypothesis space based on our training 

data that is our evidence we get a posterior probability distribution over the hypothesis 

space. In the bayes optimal classifier, each of the hypothesis according to their 

probability will apply on the each of the hypothesis will apply on the test instance. 



Secondly, their contributions according to their posterior probabilities, but in Gibbs 

sampling, we will choose a randomly high hypothesis according to P h by t and use it to 

classify the new instance. 

So, we just choose one hypothesis from the distribution and use it to classify the 

newsiest. Fortunately it is a surprising result that it has been found that the error for 

Gibbs algorithm is quite bounded. So, if the expected value is taken over the target 

hypothesis drawn at random according to the prior probability distribution, then the 

expected error of the Gibbs classifier is less than equal to twice the error of the Bayes 

optimal classifier.  

So, the Gibbs classifier which is very much practical in the sense that you can need only 

to apply one hypothesis you know if once the posterior distribution has been computed, 

Gibbs sampling can be used to choose one hypothesis which can be used to classify the 

instance and it gives an error which is no more than twice the error of the Bayes optimal 

classifier. With this we come to conclusion of today’s lecture. 

Thank you. 


