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Hello everyone, welcome to the second hands on session of the Introduction to Machine 

Learning course. I am Anirban Santara; I am doing my PhD in machine learning. Today 

we will learn couple of cool machine learning algorithms. 

In the first part of the session, we will study how to use K-Nearest Neighbor 

classification algorithm for classification of flowers of the iris data set and in the second 

part we will learn how to use K-Nearest Neighbor classifier along with principle 

component analysis for face recognition. 
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We will use python language as our language of choice for programming in this course. 

Scikits learn is a very popular machine learning library and it has a lot of machine 

learning utilities. We will study how to use K-Nearest Neighbor classifier and 

randomized PCA from Scikits learn in this session. Without further adieu let us jump 

into the exercises. 
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The first topic for today is K-Nearest Neighbor classifier. 
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The k nearest neighbor algorithm is a non-parametric machine learning algorithm and it 

maintains a database of the training samples and it every time a query is made to the 

algorithm it looks up the database and it finds the K, which is specified by the user 

nearest neighbors of the query point from the data base.  

Now, once it has retrieve this K-Nearest Neighbor it goes and finds out which class is the 

most predominant among the retrieved neighbors all right and the most predominant 



class is assigned as a target class for the query point and we will use a modified version 

of the iris data set in this exercise. The iris data set has flowers and these iris flowers fall 

in three species all right and task is to classify the iris flower from the sepal and petal 

dimension for the ease of visualization, we will chose just a first two feature dimensions 

that is the sepal dimension, sepal length and the sepal width for describing the iris 

flowers. 
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The first task is to split the available data into training and test seconds. So, we randomly 

chose 75 percent of the data that is available to us for our training set and save the 

remaining 25 percent for the test set. So, this part of the code which you see on the 

screen describes how to do it in code. 
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The next step is to go ahead and make the k-nearest neighbor classifier. So, for that you 

have to make an object of the class k-neighbors classifier and you have to set the 

numbers of neighbors to our required value. So, for example, I have set it equal to 5 and 

then we do a module dot fit x train and y train. So, this thing loads the data set into the 

module and saves it for reference when query is made. The next step is to check out how 

the algorithm is performing. So, we find the query point and the query point is first 

example from the test set. 

So, you get a prediction from the module by using module dot predict of the query point 

and in this way. So, the nearest neighbors module of the scikit learn dot neighbors library 

users helps us to visualize how the algorithm actually works out all right.  

So, here you can see the query point is the dark blue triangle and the neighbors have 

been highlighted in yellow and we can see that class two is the most predominant among 

the classes of the neighbors and hence it predicts the class two as a class of the query 

point all right and so this is how the nearest neighbor algorithm works and it is highly 

popular algorithm and it works well when say the data set is varying in its number of 

classes, for example, you cannot afford to train a parametric machine learning module 

time and again. Every time the data changes of the number of classes that you want you 

know you want your classifier to predict that changes with time. So, the K-nearest 

neighbor algorithm becomes highly relevant in those scenarios. 
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The next part of the session is about principal component analysis. So, the principal 

component analysis algorithm is a highly popular algorithm used for dimensionality 

reduction. Now, dimensionality reduction means reducing the number of variables that 

we use for representing our data. Now, why does it become relevant? In some cases, it 

becomes highly relevant we have to deal with high dimensional inputs spaces. So, our 

phenomenon called curves of dimensionality happens in such scenario. 

So, curves of dimensionality actually refers to a set of problems that crop up when we 

have too many dimensions, and this problem crop up just because the volume of the 

features space increases at such a high rate as the number of feature dimension increases 

that the amount of data that is available to us becomes spares in that. In such high 

dimensional space and the amount of training examples that we would need for getting 

statistically sound results from a machine learning algorithm.  

In such high dimensional vector spaces increases exponentially with the number of 

dimension of the input space, so that is why we would like to reduce the dimensionality 

of the features space without using much information, and then principal component 

analysis algorithm is one of those algorithms which become highly relevant in this 

particular scenario. 
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So, the principal component analysis algorithm it looks for uncorrelated features 

dimensions all right. Sometimes what happens is the observation we make the variables 

that we observe are highly correlated among themselves, for example, in this diagram 

you can see that the x and y axis, which the data observe data originally has or highly 

correlated right and the principal component analysis instead chooses a pair of different 

directions which are mutually orthogonal to each other. And if we represent the data 

along like just one of these principal components were the most of the variance of the 

data is preserved and the principal component analysis algorithm is looks for 

uncorrelated feature dimension. 

So, the amount of redundancy that is present within the correlated variables, it is 

removed when we transform the data into the space of the principal components and the 

principal component happen to be the Eigen vectors of the covariance matrix of the data, 

and let us study the principal component analysis algorithm and how it works and how 

we can use it to reduce the dimensionality of images of faces and use the reduce 

dimensional face vector for face recognition. 
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The general work flow of any face recognition algorithm goes as follows. First we have a 

whole data base of known faces and once a new face is presented we go and make a 

query to the database. The database returns a set of faces which look the closest to the 

face in the query and all of these faces are know all right. So, the database has known 

faces. So, it outputs the set of faces which are already known to us and are the closest to 

the one that has been sent in the query and then we go ahead and chose the face that is 

the most similar to the face in the query as our output. So, this is the work flow. 
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Now, how does principal component analysis work and in this particular you know 

scenario we will study in this section of the tutorial. The data set that we will be 

concerned with is the Olivetti face data set of Scikit learn. These are faces grayscale 

images of faces of forty people and each of these forty people have ten faces altogether. 

We have 400 faces and these faces have been cropped to a size of 64 cross 64 pixels. 
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And next we go ahead and make our train and test split 75 percent training data, 25 

percent test data and we use the train test split function of sklearn dot cross validation for 

doing this exercise. 
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Then we go ahead and find the eigen-faces. So, what are eigen-faces? Eigen-faces are the 

principal component that we were talking about the eigen-faces. They are the eigen 

vectors of the covariance matrix of the data set of faces. So, these eigen-faces are a set of 

components, a set of vectors you can say and if a face which can you know which 

encode a lot of information about faces.  

So, a face can be represented as a linear combination of these eigen-faces and say we 

have face of 64 cross 64 dimensions and that makes 4096 random variable for each pixel 

of the face. Now, instead of 4096 random variables which are highly correlated among 

themselves, we will go ahead and represent the faces in terms of the principal component 

and we will be using just 150 of them. Thus we have done a huge dimensional reduction. 
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And next, we will see how the principal component analysis algorithm works. So, given 

face 64, first we go ahead and make a vector out of that. So, we just do a raster scan on 

the image and we arrange the pixels along the rows into a vector of 4096 dimensions and 

next we go ahead and find the mean vector and suppose and subtract from the original 

image. So, the mean face has been calculated by the averaging all the faces in the data in 

the training data set and that is also converted into vector and subtracted from the image. 

And last we have the mean normalized image. This is necessary because it helps in 

optimization algorithm of optimization of any gradient descent based algorithm down the 

road and it is also necessary for the calculation of the covariance matrix because the 

definition of covariance is actually, expected value of x minus mu x times x minus mu x 

transpose which has been explained to in the theory section. And thus we do this exercise 

for all the images of the training set and we have the 4096 dimensional mean normalized 

images and thus we go ahead and create a matrix called x and each column of the matrix 

is one image from the training set. So, this x is a set of mean normalized training images, 

say we have capital n training images and thus the size is of the matrix x we will be 4096 

cross n. 
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Next, we go ahead and calculate the covariance matrix of the data. So, we multiply x 

with the transpose of x and we have r, the covariance matrix. The dimensionality of 

covariance matrix is 4096 cross 4096. The principal component will be the eigen vectors 

of the covariance matrix and we will see next how to calculate the eigen vectors. 

So, we will calculate the eigen vectors by using a procedure which is called 

diagonalisation in the context of symmetric metrics and in general in is called singular 

validly composition. So, what does it do? It represents the matrix r as a product of 3 

metrics, the first one is called p and it consists of the eigen vectors along the columns. 

The last one is the same matrix transposed and the central one is a diagonal matrix each 

element along the diagonal i and eigen value and it corresponds to the eigen vector in the 

matrix p. So, the first i column of p is an eigen vector the eigen value of which is the first 

element of d along the diagonal all right. So, what we will do is we will just use the eigen 

vectors corresponding to the highest magnitude eigen values. 

So, the k the magnitude of the eigen value shows which is how much a one particular 

eigen vector contributional to the information; how much information a particular eigen 

vector carries about the data all right. So, we chose the k highgon highest eigen values 

and thier corresponding eigen vectors. So, that the. So, that maximum information is 

preserved all right. So, we just chose the first k columns because these k columns are 

corresponding to highest magnitude eigen vector eigen value.  



So, we should first make sure that the eigen values are arranged in decreasing order of 

the magnitudes and corresponding eigen vectors are present in the same you know same 

column location as the value as the eigen value all right. So, we just chose the top k 

eigen values, and eigen vectors and these this value of k is what we specify to the 

principal component analysis algorithm and we specify that to be 150. So, know we will 

do this exercise this part of the exercise in code. 
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So, the randomize PCA algorithm of Scikit learn it does efficient incrementation of the 

components as algorithms. So, we said we first specify that number of components will 

be 150 and then we initialize PCA model and we say that the number of component is 

the equal to 150 and we fit on the remaining data, this all the operation that we saw. 

Secondly, showed before the entire mean normalization the SVD and then we tangiest 

try and visualize the eigen faces.  

So, eigen faces are calculated eigen vectors are calculated they are store within the 

model. We can retrieve them as pca dot component s underscore all right and then we 

reshape them to height width. So, that we can visualize them well and we will show them 

in a minute. So, once we have identified the principal components we go ahead and do 

our dimensionality reduction, we just preserve the parts that are necessary to us just a 

first cake principal components. 
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And as you can see the dimensionality is now 4096 cross k and we have changed the 

names to the previous names followed by 1 just to avoid ambiguity. So, now, we do the 

dimensionality reduction. So, what do we do given an input image we first mean 

normalize, it make the find the vector we us the mean image as we calculated before and 

we subtract the mean image and we calculate the mean normalized image. Now, the 

mean normalized image is transformed with p 1 transpose, we multiply it p 1 transpose 

into a, the mean normalized image and what we have is a k dimensional vector which 

represent the image in reduce dimensional space span by the top k eigen vectors. So, this 

is how the dimensionality reduction works using PCA. 
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And now we will use the now we will implement that in the code first. So, pca dot 

transform of a set of input vectors. We will do the transformation to the PCA 

dimensions, this is what we do here, and we transform both the trainee set and the test set 

into 150 principal components. 
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And then we do k-nearest neighbor classification of faces in this principal component 

vector space, in the space span by the principal components rather. So, what do we do we 



first declare our classifier we fit it on the trainee set and then we do a classification on 

the test set. 
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And the results are quite nice quite impressive and as you can see some examples of 

classification and we have 55 percent test accuracy with numbers of neighbors equal to 5 

and we can further tune the number of neighbors and have better and better accuracy, so 

that was nice demonstration of how principle components analysis and k-nearest 

neighbor algorithm can come together and do a solve a very interesting and very cool 

problem like face recognition. 

Thank you guys see you in the next video. Bye-Bye. 


