
Introduction to Machine Learning

Prof. Anirban Santara

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture – 14

Python Exercise on kNN and PCA

Hello everyone, welcome to the second hands on session of the Introduction to Machine

Learning course. I am Anirban Santara; I am doing my PhD in machine learning. Today

we will learn couple of cool machine learning algorithms.

In the first part of the session, we will study how to use K-Nearest Neighbor

classification algorithm for classification of flowers of the iris data set and in the second

part we will learn how to use K-Nearest Neighbor classifier along with principle

component analysis for face recognition.

(Refer Slide Time: 00:55)

We will use python language as our language of choice for programming in this course.

Scikits learn is a very popular machine learning library and it has a lot of machine

learning utilities. We will study how to use K-Nearest Neighbor classifier and

randomized PCA from Scikits learn in this session. Without further adieu let us jump

into the exercises.

(Refer Slide Time: 01:21)

The first topic for today is K-Nearest Neighbor classifier.

(Refer Slide Time: 01:25)

The k nearest neighbor algorithm is a non-parametric machine learning algorithm and it

maintains a database of the training samples and it every time a query is made to the

algorithm it looks up the database and it finds the K, which is specified by the user

nearest neighbors of the query point from the data base.

Now, once it has retrieve this K-Nearest Neighbor it goes and finds out which class is the

most predominant among the retrieved neighbors all right and the most predominant

class is assigned as a target class for the query point and we will use a modified version

of the iris data set in this exercise. The iris data set has flowers and these iris flowers fall

in three species all right and task is to classify the iris flower from the sepal and petal

dimension for the ease of visualization, we will chose just a first two feature dimensions

that is the sepal dimension, sepal length and the sepal width for describing the iris

flowers.

(Refer Slide Time: 02:47)

The first task is to split the available data into training and test seconds. So, we randomly

chose 75 percent of the data that is available to us for our training set and save the

remaining 25 percent for the test set. So, this part of the code which you see on the

screen describes how to do it in code.

(Refer Slide Time: 03:12)

The next step is to go ahead and make the k-nearest neighbor classifier. So, for that you

have to make an object of the class k-neighbors classifier and you have to set the

numbers of neighbors to our required value. So, for example, I have set it equal to 5 and

then we do a module dot fit x train and y train. So, this thing loads the data set into the

module and saves it for reference when query is made. The next step is to check out how

the algorithm is performing. So, we find the query point and the query point is first

example from the test set.

So, you get a prediction from the module by using module dot predict of the query point

and in this way. So, the nearest neighbors module of the scikit learn dot neighbors library

users helps us to visualize how the algorithm actually works out all right.

So, here you can see the query point is the dark blue triangle and the neighbors have

been highlighted in yellow and we can see that class two is the most predominant among

the classes of the neighbors and hence it predicts the class two as a class of the query

point all right and so this is how the nearest neighbor algorithm works and it is highly

popular algorithm and it works well when say the data set is varying in its number of

classes, for example, you cannot afford to train a parametric machine learning module

time and again. Every time the data changes of the number of classes that you want you

know you want your classifier to predict that changes with time. So, the K-nearest

neighbor algorithm becomes highly relevant in those scenarios.

(Refer Slide Time: 05:07)

The next part of the session is about principal component analysis. So, the principal

component analysis algorithm is a highly popular algorithm used for dimensionality

reduction. Now, dimensionality reduction means reducing the number of variables that

we use for representing our data. Now, why does it become relevant? In some cases, it

becomes highly relevant we have to deal with high dimensional inputs spaces. So, our

phenomenon called curves of dimensionality happens in such scenario.

So, curves of dimensionality actually refers to a set of problems that crop up when we

have too many dimensions, and this problem crop up just because the volume of the

features space increases at such a high rate as the number of feature dimension increases

that the amount of data that is available to us becomes spares in that. In such high

dimensional space and the amount of training examples that we would need for getting

statistically sound results from a machine learning algorithm.

In such high dimensional vector spaces increases exponentially with the number of

dimension of the input space, so that is why we would like to reduce the dimensionality

of the features space without using much information, and then principal component

analysis algorithm is one of those algorithms which become highly relevant in this

particular scenario.

(Refer Slide Time: 06:41)

So, the principal component analysis algorithm it looks for uncorrelated features

dimensions all right. Sometimes what happens is the observation we make the variables

that we observe are highly correlated among themselves, for example, in this diagram

you can see that the x and y axis, which the data observe data originally has or highly

correlated right and the principal component analysis instead chooses a pair of different

directions which are mutually orthogonal to each other. And if we represent the data

along like just one of these principal components were the most of the variance of the

data is preserved and the principal component analysis algorithm is looks for

uncorrelated feature dimension.

So, the amount of redundancy that is present within the correlated variables, it is

removed when we transform the data into the space of the principal components and the

principal component happen to be the Eigen vectors of the covariance matrix of the data,

and let us study the principal component analysis algorithm and how it works and how

we can use it to reduce the dimensionality of images of faces and use the reduce

dimensional face vector for face recognition.

(Refer Slide Time: 08:03)

(Refer Slide Time: 08:08)

The general work flow of any face recognition algorithm goes as follows. First we have a

whole data base of known faces and once a new face is presented we go and make a

query to the database. The database returns a set of faces which look the closest to the

face in the query and all of these faces are know all right. So, the database has known

faces. So, it outputs the set of faces which are already known to us and are the closest to

the one that has been sent in the query and then we go ahead and chose the face that is

the most similar to the face in the query as our output. So, this is the work flow.

(Refer Slide Time: 08:57)

Now, how does principal component analysis work and in this particular you know

scenario we will study in this section of the tutorial. The data set that we will be

concerned with is the Olivetti face data set of Scikit learn. These are faces grayscale

images of faces of forty people and each of these forty people have ten faces altogether.

We have 400 faces and these faces have been cropped to a size of 64 cross 64 pixels.

(Refer Slide Time: 09:29)

And next we go ahead and make our train and test split 75 percent training data, 25

percent test data and we use the train test split function of sklearn dot cross validation for

doing this exercise.

(Refer Slide Time: 09:48)

Then we go ahead and find the eigen-faces. So, what are eigen-faces? Eigen-faces are the

principal component that we were talking about the eigen-faces. They are the eigen

vectors of the covariance matrix of the data set of faces. So, these eigen-faces are a set of

components, a set of vectors you can say and if a face which can you know which

encode a lot of information about faces.

So, a face can be represented as a linear combination of these eigen-faces and say we

have face of 64 cross 64 dimensions and that makes 4096 random variable for each pixel

of the face. Now, instead of 4096 random variables which are highly correlated among

themselves, we will go ahead and represent the faces in terms of the principal component

and we will be using just 150 of them. Thus we have done a huge dimensional reduction.

(Refer Slide Time: 10:47)

And next, we will see how the principal component analysis algorithm works. So, given

face 64, first we go ahead and make a vector out of that. So, we just do a raster scan on

the image and we arrange the pixels along the rows into a vector of 4096 dimensions and

next we go ahead and find the mean vector and suppose and subtract from the original

image. So, the mean face has been calculated by the averaging all the faces in the data in

the training data set and that is also converted into vector and subtracted from the image.

And last we have the mean normalized image. This is necessary because it helps in

optimization algorithm of optimization of any gradient descent based algorithm down the

road and it is also necessary for the calculation of the covariance matrix because the

definition of covariance is actually, expected value of x minus mu x times x minus mu x

transpose which has been explained to in the theory section. And thus we do this exercise

for all the images of the training set and we have the 4096 dimensional mean normalized

images and thus we go ahead and create a matrix called x and each column of the matrix

is one image from the training set. So, this x is a set of mean normalized training images,

say we have capital n training images and thus the size is of the matrix x we will be 4096

cross n.

(Refer Slide Time: 12:27)

Next, we go ahead and calculate the covariance matrix of the data. So, we multiply x

with the transpose of x and we have r, the covariance matrix. The dimensionality of

covariance matrix is 4096 cross 4096. The principal component will be the eigen vectors

of the covariance matrix and we will see next how to calculate the eigen vectors.

So, we will calculate the eigen vectors by using a procedure which is called

diagonalisation in the context of symmetric metrics and in general in is called singular

validly composition. So, what does it do? It represents the matrix r as a product of 3

metrics, the first one is called p and it consists of the eigen vectors along the columns.

The last one is the same matrix transposed and the central one is a diagonal matrix each

element along the diagonal i and eigen value and it corresponds to the eigen vector in the

matrix p. So, the first i column of p is an eigen vector the eigen value of which is the first

element of d along the diagonal all right. So, what we will do is we will just use the eigen

vectors corresponding to the highest magnitude eigen values.

So, the k the magnitude of the eigen value shows which is how much a one particular

eigen vector contributional to the information; how much information a particular eigen

vector carries about the data all right. So, we chose the k highgon highest eigen values

and thier corresponding eigen vectors. So, that the. So, that maximum information is

preserved all right. So, we just chose the first k columns because these k columns are

corresponding to highest magnitude eigen vector eigen value.

So, we should first make sure that the eigen values are arranged in decreasing order of

the magnitudes and corresponding eigen vectors are present in the same you know same

column location as the value as the eigen value all right. So, we just chose the top k

eigen values, and eigen vectors and these this value of k is what we specify to the

principal component analysis algorithm and we specify that to be 150. So, know we will

do this exercise this part of the exercise in code.

(Refer Slide Time: 15:06)

So, the randomize PCA algorithm of Scikit learn it does efficient incrementation of the

components as algorithms. So, we said we first specify that number of components will

be 150 and then we initialize PCA model and we say that the number of component is

the equal to 150 and we fit on the remaining data, this all the operation that we saw.

Secondly, showed before the entire mean normalization the SVD and then we tangiest

try and visualize the eigen faces.

So, eigen faces are calculated eigen vectors are calculated they are store within the

model. We can retrieve them as pca dot component s underscore all right and then we

reshape them to height width. So, that we can visualize them well and we will show them

in a minute. So, once we have identified the principal components we go ahead and do

our dimensionality reduction, we just preserve the parts that are necessary to us just a

first cake principal components.

(Refer Slide Time: 16:07)

And as you can see the dimensionality is now 4096 cross k and we have changed the

names to the previous names followed by 1 just to avoid ambiguity. So, now, we do the

dimensionality reduction. So, what do we do given an input image we first mean

normalize, it make the find the vector we us the mean image as we calculated before and

we subtract the mean image and we calculate the mean normalized image. Now, the

mean normalized image is transformed with p 1 transpose, we multiply it p 1 transpose

into a, the mean normalized image and what we have is a k dimensional vector which

represent the image in reduce dimensional space span by the top k eigen vectors. So, this

is how the dimensionality reduction works using PCA.

(Refer Slide Time: 17:02)

And now we will use the now we will implement that in the code first. So, pca dot

transform of a set of input vectors. We will do the transformation to the PCA

dimensions, this is what we do here, and we transform both the trainee set and the test set

into 150 principal components.

(Refer Slide Time: 17:22)

And then we do k-nearest neighbor classification of faces in this principal component

vector space, in the space span by the principal components rather. So, what do we do we

first declare our classifier we fit it on the trainee set and then we do a classification on

the test set.

(Refer Slide Time: 17:47)

And the results are quite nice quite impressive and as you can see some examples of

classification and we have 55 percent test accuracy with numbers of neighbors equal to 5

and we can further tune the number of neighbors and have better and better accuracy, so

that was nice demonstration of how principle components analysis and k-nearest

neighbor algorithm can come together and do a solve a very interesting and very cool

problem like face recognition.

Thank you guys see you in the next video. Bye-Bye.

