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Hello everyone. Welcome to the second tutorial class of this course. I am Anirban and I 

am doing my PhD in machine learning. I am TA for this course. In this class, we are 

going to summarize all the topics that have been covered in the second week of this 

course and then we will study how to solve problems, and those kinds of problems, 

which you can expect in the assignments and the exam. 

(Refer Slide Time: 00:43) 

 

So, the topics that we are going to cover today are linear regression and decision trees. 

So, let us take up the first topic first – linear regression. 



(Refer Slide Time: 00:52) 

 

As we all know, linear regression is all about fitting a straight line to the data. And, in n 

dimensions, straight line is generalized to a hyper plane. So, we have a set of training 

examples. Our motivation is to fit one straight line that best fits the data, which 

minimizes the least square error in approximation. So, you will face problems in the 

exam, which go like this. Suppose you have been given a set of training examples and 

they go like x 1, y 1, x 2, y 2 till x n, y n. So, this is your given training set.  

It has n examples and these are points from the two dimensional real space. So, we are 

going to fit one single straight line to this data. Find the equation of the line that best fits 

the data and minimizes rather in the sense that, it minimizes the squared error; all right. 

So, we are going find that straight line, which minimizes the squared error and thus it is a 

best fit to the data.  

So, the first step in this problem is to estimate the squared error. So, number 1 step is 

estimation of squared error. So, this is called squared error, but this is actually sum of 

squared error or you can also consider mean squared error. This does not change the 

solution, but it changes the shape of the error function a little bit. So, the squared error 

function J will look like it is equal to summation i equal to 1 through N y i minus f of x i 

squared; where, f is your linear regression hypothesis. 
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Now, as is very clear from the name that, f will be of the form; think is of linear 

regression; f x is going to be of the form m x plus c. So, rather I can write it as f maps 

from x to y. So, let this x be little different. So, this is the set of x’s to the set of y’s; all 

right. So, then the definition is y equal to m x plus c. So, this is f x; all right. So, this is 

the equation of the line that you are trying to figure out; all right. So, what we will do is 

we will rewrite the error.  

So, the error is equal to 1 through N – y i minus m x i minus c whole square. So, this is 

going to be the error function that we will try and minimize. So, objective is to minimize 

this; of course, with respect to m and c, because these two are the parameters of your 

learning algorithm of the straight line, which you are trying to tune and adjust to the data. 

So, how do we go about solving it? We find the derivative of j with respect to m and c 

and set them to 0. 
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So, first we do del J del m equal to 0; all right. So, this is going to be - del J del m is 

going to yield you to i equal to 1 through n; then, y i minus m x i minus c times minus x 

i; right? So, you first find the derivative of this entire quantity. So, you first take the 

derivative inside the summation sign; then, you take the derivative of this quantity with 

respect to the quantity inside the square and you get this to times the quantity inside and 

then you will take the derivative of the quantity inside this thing in terms of m – by chain 

rule. And, what comes out is minus x i.  

And, you are trying to set this thing equal to 0; which amounts to summation i equal to 1 

through n. So, we can send this minus n and 2 to the other side. So, we can divide both 

sides by minus 2. And, we end up with this thing. So, it is just y i minus m x i minus c 

times x i equal to 0. So, this is going to be our first equation. So, I will keep this. So, let 

me try and make both of these things visible; oops; all right, let us keep it this way for 

continuity. So, now you can see; all right. So, you have the error function, which is j; you 

have the first equation. 

And, the second thing is we are going to find out the derivative of; let me write here; del 

J – del – this is the second thing, c equal to 0. So, what is this going to yield us? So, 

again we go back to this. So, first, we have this summation – i equal 1 through n; then, 



we have y i minus m x i minus c. We can actually get rid of this, because we have this. 

So, this is what we are trying to take the derivative of. So, del J del c is equal to again 

twice – 2 comes before twice of this time minus 1; right? Because the derivative of this 

quantity with respect to c is going to be minus 1, which is coming here, so this quantity 

will be set to 0 in order to minimize; and this again boils down to yes this boils down to 

this quantity, summation i equal to 1 through n y i minus m x i minus c equal to 0, 

because we can send this minus 2 to the other side and we are left with this quantity. So, 

this is the second equation. 

Now, what you can do is; yes you have these two equations and you can plug in the 

values of x i's and y i's; all right. So, say you have been given this set, right? You have 

been given this set of values x i and y i – 1 through n. So, you are going to put these 

values in these two equations. So, this x 1; once you will have one expression – one of 

these terms for i equal to 1, so you put the values of x 1 and y 1 over here. And, over here 

as well; and, use to make it some over all those values. So, you get now one equation.  

The second equation comes from here. If we put the same values, x – the values of x i’s 

and y i's in this equation; and, you get another. And then, you simultaneously solve these 

two equations and you get the result; all right. So, it is going to be pretty easy, pretty 

straightforward. And, I hope that there will be no problem in solving this kind of 

questions. So, this is how you find the equation of a best fit line given a set of data 

points. 

Now, the next and another kind of question that you can face from this section is like 

asking about the expression of squared error should be; and, it is very easy; the one we 

wrote over here. And, this is the expression of the squared error. So, you have to choose 

from one of the examples maybe. And, if say some other kind of (Refer Time: 11:35) in 

the exam if difficult question comes; and, you have been asked, it has been specified that, 

the error is something different from squared error like cross (Refer Time: 11:46) You 

may look up the web what it really is.  

So, in that case, the expression of j will change. And, such kinds of error functions are 

applicable for different kind of like different kinds of applications. They are tuned to 



certain applications. And so, if a different kind of error function is given, then you have 

to evaluate it this way and then you have to take the derivative with respect to the 

different parameters of your model and then find out the values by solving simultaneous 

equations. 
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The next topic that we are going to take up today is decision tree. So, decision tree is 

nothing but a set of nested if else conditions, which take one huge dataset, say we have 

this bucket full of data points. And these data points are from in different dimensions; 

right? So, our data points – these are points belonging to say R raised to the power N. 

From an n dimensional phase, so you have space. So, you have n is the dimensionality of 

the feature space.  

Or, in other words, you can say that you have n features of the input data. So, how do 

you learn the decision tree? At every step, you are going to choose number 1 a feature; 

and second, a point of split on that a feature f i, I would say; on that feature axis f i; all 

right such that homogeneity; geneity – n e i t y, whatever. Such that the subsets of data 

points going into the child nodes are more homogenous. So, there should be a method of 

calculating the homogeneity of a set in this context.  



So, at every step, you have to first estimate for which feature we have the; I would say 

the most possible as homogenous as possible; all right. So, you have to choose that 

particular feature and that particular split on that feature axis such that the homogeneity 

of the subsets being produced as a result of that is maximized. So, there should be a 

method of quantifying the homogeneity of a set and or homogeneity or purity of a set. 

And, one of those metrics is entropy. So, let us look at the expression of entropy. 

(Refer Slide Time: 15:48) 

 

Entropy of a set as you have studied earlier, let us say we have points from n different 

classes in a set. And, say the probabilities, if we calculate the probability by the 

frequency definition of probability, then this amounts to; this is the same as saying that, 

let the fraction or fractions of points of the different classes are say f 1, f 2 this way until 

f N. So, let us say that, these are the different fractions of points; all right. Such that f 1 

plus f 2 dot dot dot till f N is 1.  

So, this is also the probability of a particular class in that set. So, we have a huge mixture 

of points of n different classes; and, this is the class distribution. These are the fractions 

of the points from different classes. So, how do you calculate the entropy? So, entropy of 

this set is given by E equal to summation i equal to 1 through capital N; of course, a 

negative sign f i log f i. 



Now, the base of the logarithm decides the unit of the entropy. And, popularly, we have a 

log base 2 in the definition of entropy. And then, the entropy is quantified end units of 

bits. So, given a set of say N different classes, all right? Say we have this for example; 

we have a set, which looks like this. See there are five points of class crosses and say 

three points of class circles. So, f cross is going to be how much? So, it is going to be 5 

by 8; right? And, f naught or f f – you know circles, is going to be 3 divided by 8.  

And, entropy is equal to summation or just I will write it is going to be 3 by 8 log of 3 by 

8 minus 5 by 8 log of 5 by 8. So, whatever is the answer? So, first you have to estimate 

the probabilities or the fractions. And, if you are estimating from frequency definition, 

then it is equal to the fraction of points. And then, you are going to calculate the entropy. 

So, you can find this kind of questions in the exam in which you will be given a set of 

points and you have to calculate the entropy of that set; pretty easy right? So, this term as 

you can say as you can see that, this term is going to be minimum and it can be proved 

when the set is a uniform one; so you have the same number of members from every 

single class; and in that case, the entropy is maximized; and, because there like complete 

randomness – uniform distribution. 

And, entropy is going to be zero when there is a just point from one single class. So, the 

fraction of that particular class will become 1. So, it is 1 log 1. So, log 1 is .0. So, you are 

going to have zero entropy. And, in course of training a decision tree, our motivation is to 

keep splitting the dataset into fragments, into subsets until we have close to zero entropy. 

So, we should be able to say for certain that, given we are at a particular leaf node, all 

right; the class distribution is almost certainly just 1.  

We are completely sure that, the point belongs to one particular class. So, you keep start 

pushing the unknown sample from the top of decision tree and you end up at a leaf node. 

And, that particular leaf node should stand for one particular class. So, when the example 

lands up in that particular leaf node, we can say that, yes, this example belongs to that 

particular class, which that leaf node was corresponding to; right? So, this is the notion 

of entropy. 
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And, in connection with entropy, there is another quantity, which is called information 

gain. So, assume that, we had an initial set of capital N examples. Now, these kinds of 

questions are going to come in exam. And, in this particular demonstration, I am not 

going to use numbers; I am going to just use symbols, so that you can remember the 

expression and kind of like use it to quickly solve problems in exam.  

And, also to get a feel of what is really happening. So, say we are starting with capital N 

examples; and, in the initial entropy – entropy of this particular set is equal to say E 1. 

Or, rather let us say E zero or this is N 0. So, initially, we have in our set, N 0 samples 

and the entropy of the set is E 0, which was calculated in the way that I just demonstrated 

to you, using this definition. So, the entropy was calculated. And, this is what we have. 

Now, we chose a particular feature axis and a particular split on that feature axis; and, we 

ended up producing these two subsets. So, the subsets are N 1 and N 2 large. So, N 1 

plus N 2 is equal to N 0. And, the entropy is E 1 and E 2. So, the information gain is 

going to be calculated as E 0 minus N 1 by N 0 into E 1 plus N 2 by N 0 into E 2. So, 

this is the formula for calculation of information gain. And, this quantifies how much 

randomness has been reduced or how pure the subsets become as a result of this split.  



And, at every step of decision tree learning, we choose the feature axis and a split on that 

feature axis, which maximizes the information gain. So, this is one of the criteria of 

decision tree learning. So, in the exam, you are going to find questions in which you will 

be asked that, which particular feature is the best to choose and in the context of like it 

for which feature maximizes the information gain and thus is the best choose. 

So, you have to try out for every single feature given in the question and calculate the 

information gains associated with them. And, thus you can like figure out which feature 

is the best and the one which maximizes the information gain is the best to choose. Or, 

you will be given this kind of a scenario and ask to calculate the information gain. You 

will be able to do it; right? So, this concludes the tutorial of this week. And, the 

assignment will be released this Sunday and an announcement will be made in the forum. 

This tutorial video will also be made available along with the notes.  

So, the deadline will be the Thursday after this week. So, one and a half weeks after the 

start of week 2, the deadline will be set. So, all of those will be announced in the portal. 

And, best of luck; wish you can solve these kinds of questions in the exam quite 

comfortably. 

Bye-bye, see you next time. 


