Programming in C++
Prof. Partha Pratim Das
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 08
Constants and Inline Functions

Welcome to module 6 of Programming in C++. In the first five modules, we have
recapitulated the C Programming language, C Standard library and different constructs of
the C language itself. We have also taken several examples starting from elementary
input output, arithmetic operation, loop kind of examples to use of arrays, strings and
specifically data structure, we took example of char to show how programming in C++
and judicious use of the C++ standard library can make programming in C++ really

easier more efficient and less error prone.

From, this module onwards we will now start getting into the C++ programming
language discussing different features. In the next few modules, we will specifically deal
with a set of features which are commonly called as Better C Features that is these
features do not make use of the core paradigm of object orientation that exists in C++.
But these are procedural extensions to the C language which are required for making the
object oriented programming possible and are as such nice features to have they could
have been in C also incidentally they were not thought off when C was designed. And the
interesting part is that some of this features after they were introduced in C++, and we
are going to discuss one of those features right in this module. Some of these features
have been later on taken into C programming and are now available in the C 99 standard.

We start this module 6, where we will discuss about constants and inline functions.

(Refer slide Time: 02:36)

Module Objectives

o Understand const in C4 4 and contrast with Manifest
Constants

e Understand inline in C4 4 and contrast with Macros

NPTEL MOOCs Programming in C e+

So, we will try to understand const in C++ and contrast that with the similar concept not
exactly the same concept, but similar concept of manifest constant in C and we will try to

explain the inline functions in C++ and contrast them with macros.

(Refer slide Time: 03:01)

p}] Module Outline

e const-ness and cv-qualifier

e Notion of const
o Advantages of const

o Natural Constants - n, e
o Program Constants = array size

|
o Prefer const to #define ‘
e const and pointer
e const-ness of pointer / pointee. How to decide?
o Notion of volatile ‘
¢ inline functions
o Macros with params
e Advantages
o Disadvantages
e Nation of inline functions

o Advantages

Programmng in (

NPTEL MOOCs

So, these are the topics that we will discuss, we will slowly unfold that you can see it on

the left side of the screen.

(Refer slide Time: 03:09)

p}} Program 06.01: Manifest constants in C

o Manifest constants are defined by #define
o Manifest constants are replaced by CPP (C Pre-Processor)
o S— Progras sier CPP
fincivde CLostreans | £/ Contanta of “L0Mmrsan> hatlas Teplaied by oy
finciuds ccmath> /7 Contenns of comath> bender replaces by s L)
wEing masespace atd WAL hamsspace st
Matine TVO 2 /7 Setine of TVE consuned by O
Safine P14 Deataniy) /7 paatine of Pl conssasd by OOF
st sain() { e main() o
ARt r s 3y (LU B L
dowble peri « Souble peri
™VO » PL oy 2% 4.0vazanit.0) o r; // Meplaced by PP
" ¢ "Parissrar » LOut 44 “Parisetar «
o pari o sndl cc pari <o wmdd
Teturs O fwvum O
)) o
-
Pwiimater MW Perimeten LILREL)
t
® TV0 I & maniiest contam ® CPP saplacos (he Toben TV0 by 2
® FL s & manifes constant o CPP suploces the token Pl by & Oestan(l 0)
® TNO A& PI Sob e varsalies ® Complion sons Daem an Comelanty
NPTEL MOOCs Programming in Ce+ Partha Praves Das

So let us start with the Manifest Constants in C. All of us know that we can define a
constant value or a fixed value using any literal or using an expression, if we write hash
define followed by a name and then followed by the particular expression that we want

to define.

(Refer slide Time: 03:49)

b o R
rogram 06.01: Manifest constants in C
Wy

o Manifest constants are defined by #define

e Manifest constants are replaced by CPP (C Pre-Processor)
Sunce Progeam) Progras sliar CPP

Coatvents of CLoMtreass Mesdar Teplaced by (99

Areuts of <omath> header replaced by 9P
UNANg Namsspace ot

Sdatine TV 2 / Stefine of TVO comsused ty OFF &
ST P Degtnaly 0) // Meatine of Pl conssned by O

tnt maind) (L maia() (

s o 40; U |
fowble perj.s Soublngert =+
4 r 3 % Osanantt O » 1) // Meplaced by OO
Sefar = it e churianier -
¢ pard <o wndl

So, on left we can see examples of this in terms of what we have here; see two is a
defined to be the value 2. Similarly, we have shown how to define pi so which is defined
in terms of an expression. Pi is a ten 1.0 is pi by 4 so if you multiply it by 4 you get the
value of pi. Then we use them in the expression here to compute the perimeter of a
circle. This is a program which is a very commonly used in C and many of you have

written this earlier.

Now, let us look into this program little bit differently, let us look on the right hand side.
The hash define that we had here of two finally gets replaced at this point by the C
preprocessor. So, before the program goes into compilation this line is removed and
wherever t w 0, this symbol had occurred, earlier as in here as in here will get replaced
by whatever | have been defined that symbol to be. So, you can see that pi has been
replaced by this whole expression in this and this is the code which actually goes for

compilation to the C compiler.

This is the behind the scene scenario and we do not normally unless you put special
options in your compiler you would not be able to see this version of the program, where
just this hash defines has been replaced. What is the purpose of the hash define is to is

simply to give the symbol and the expression as equivalent names and C preprocessor

can do the replacement. This is just to make you understand, what is the scenario of a

manifest constant?

(Refer slide Time: 06:07)

p’}] Notion of const-ness

® The value of a conat variable cannot be changed after definition

S L TR | /% Ah ARk Sype variable WiTh walue 10
* A8 snatant

B A In s conphlation arrer ah b cnmmot be dhanged

(U

int o = o

Powobn /7 Weld ow by peiaaer ‘

op o T Ohange m by Pl e e T

P R0 et EaNhen Erer a8 8 ar b shanged by op = A
o Naturally, a conat variable must be initialized when defined

CONat L8t N /7 In 8 compLIAtIan SETOE S8 B SEAT Be LRITIALLaed

® A vaniable of any data type can be declared as conat

dovble re

souble im
) Complex
connt

typedet struct Oueplex |
Complas ¢ = €20, T.0) o & Complen type vatisble ‘

"rugram

So, what will be the consequence of this? The consequence is that | wanted to actually
use a value which | wanted to treat as constant, but since | have got it replaced if I just
again look into this and concentrate on the last line in the comment | wanted to use that
as a constant and in the process the compiler actually never gets to know that they were
as a variable called two or they were a symbol called t w o, the compiler sees that
numerical 3 because it has been replaced. So to take care of this a Notion of Const-ness

has been introduced.

(Refer slide Time: 07:02)

;é_} Notion of const-ness

® The value of a conat varlable cannot be changed after definition

Poran 2D s ampiiakinn sErnt a0 8 sar be shanged Woepet
: / {
o Natutally, a const variable must be initiahsed-when defined
snet lat » I8 & Complistiom arrur o8 B Suet be LRitialiaed
® A variable of any data type can be declared as const

typedet wtruct Oomples |
fouble re

fouble in
) Conplex
osoant Complas ¢ = (2.0

So, if we look into how const-ness is done, so you see we are doing a declaration where
we prefix the declaration of n by a new keyword const. If | just write int n initialize 10
we know n is an integer type of variable whose initial value is 10. We are prefixing it
with this const keyword, if we do that what it means is initial value of n is 10 and it also
says that it cannot be changed in future, that is | cannot by any assignment or by any
other means | can change n, n will remain to be 10 all through the program. So, if | try to
do something like this here which is in assigned 5 and try to compile that code, the

compiler will give an error will say that n is constant it cannot be changed.

| can try to bypass that and do something like this as in here, as usually if | had another
variable m and a pointer p which is a integer type pointer | take the address of mand p |
can certainly use the pointer to change the value of m, if | do assign seven to star p what
it means that it actually changes m. But, if | try to do the same thing here, if | try to
change this value of n by assigning the address of n into the pointed variable p and
subsequently, possibly I can do star p assigned 5 | will not be allowed to do that. So, you
may be little bit surprised that if we define a variable to be const and then try to use a
pointer and take its address even that is given to be a compilation error. And the reason it

is a compilation error is if this is not an error then you will be able to do this, which is in

the violation of the principle of const-ness that we are trying to define, that we are trying

to say that n cannot be changed.

(Refer slide Time: 09:24)

® The value of a conat varlable cannot be changed after definition

;:é-} Notion of const-ness

Aope
P /7 Nl e by el
DR SR ST T T F

P 16 & ompl labinn Erer a0 & Sar b shangel by op = 4
o Naturally, a const variable must be initialized when defined

B /7 1 8 compliation arvTer a8 B seet b LRitialiaed
® A vanable of any data type can be declared as const

typedet wtruct Oosples {
dowble re
fouble tn
|) Coeplex
osant Complar ¢ = €10, T.0)

What is a consequence of that? The next natural consequence of that is a const variable
must be initialized. As soon as it is getting defined it must be initialized, because if you
do not initialize it then there is no way to change its value so whatever garbage value it
has that garbage only will. So, if you declare a const variable without initialization that

will become a compilation error

We can also declare variables of different types as const here is an example of using the
struct type to variable which is a complex number say and we can define that to be
constant which will mean that with this const-ness you will no more be able to change
the value of the variable of a component say ¢ dot re. C dot re by definition has become
2.3 because we have initialized and because we have said that c is const, if ¢ is const then
whole of it is const | cannot change any of the component. So, if I try to assign 3.5to ¢

dot re it will be a compilation error. This is the notion of the const-ness.

(Refer slide Time: 10:37)

Program 06.02: Compare #define and const

So let us see how we use it. So, let us now put two programs side by side on the left, the
typical C program which uses hash define and on the right we write an equivalent
program in C++ which makes use of const-ness to achieve the same purpose. Earlier we
were writing hash define two to the value 2, now we are saying that two is a variable of
type integer which is initialized with two, but it is a const variable so you cannot change
it. The major consequence of this is when this program on the right hand side, when this
program gets true the C preprocessor certainly said it is no hash define, so that symbol
two will not get replaced at this point.

Similarly, the symbol pi will stay and the compiler will get to see that these are the
different variables that exist in the program and the compiler knows that these are
constant these cannot be changed. So you can achieve the same purpose that you had in
C and you get the added advantage that now the compiler can see all of these and |
compiler would know what is the type of two, compiler would know what is the type of
pi or for that matter any variable, any value that you define to be constant using the const

keyword.

(Refer slide Time: 12:24)

Ei} Advantages of const

o Natural Constants like i, e, ® (Golden Ratio) etc, can be
compactly defined and used
" In A= 4. 00t / LR N
- oepi .o
-o . . Loy ™o
" s) Trw P
lllllll FALAR »
il]]
Note: NULL 1% 4 manifest constant in C/C++ set to 0
® Program Constants like number of elements, array size etc. can

be defined at one place (ot times in & header) and used all over
the program

et i shrrapdise « 100
coast 1sa alllassncs « 10 W

] =4 +4

So you get a lot of advantages in terms of using that. There are two major contexts in
which you would like to use constant values; one context is, when you deal with different
natural constants like pi like e like the golden ratio phi the boolean truth values false
value null value and so on. There are several natural constants that occur in the program
certainly you can always define them with const with that they will have their value, they
will have their type, and they will have their basic property that natural constants
naturally you cannot change the value of pi or you cannot change the value of e, so that
property will also be retained.

In addition another place where we would frequently use constant is where something is
constant for my program or something is constant for a particular function. So, for that
we will use the second set of definitions like we can have an array size defined to be a
constant we can have number of elements defined to be a constant. These are not
universal natural constants, but these are constants for my function. If | have done that
then the advantage that we get is when we write the program, we can write them in terms
of these variables so that later on if we have to change them we can just change the
initialization of the constant which is their possibly at the top of the program or in some

header file.

There is one added advantage of doing this, if you do hash define, the hash define has a
scope over the whole file. If | hash define some value n to a certain specific constant
value then wherever | have n in my program that gets replaced by this hash define value.
But const is a variable declaration so it can be done in any scope | can do it within a
function, I can do it within a block within a function and like any variable declaration the
variable declaration of const will also remain limited within that scope, so it is possible
that | have the same variable n in the same file occurring in two different functions both
in both places is this constant but it has different values, you cannot achieve this kind of

effect with hash define.

(Refer slide Time: 15:07)

ﬂ?] Advantages of const

® Prefer const over #define

We summarize that we prefer const over hash define because it is not safe in terms of
type it is replaced by CPP where as const is not. So, if you are using a debugger you will
not be able to see the hash define symbols in the debugger with const you will be able to
see that. The other side effect is since the hash define replaces the expression at every
point it needs to be evaluated as many times as it is replaced, where as in case of const it
is evaluated only at the initialization point. So, const certainly has a complete advantage
over the hash define.

(Refer slide Time: 15:46)

{i}] const and Pointers

® const-ness can be used with Pointers in one of the two ways

¢ Pointer to Constant data where the paintes (pointed
data) cannot be changed
¢ Constant Pointer where the pointer (address) cannot be
changed
o Consider usual pointer-pointes computation (without conat)

e w e

et » =6

Ay s poosln)/ popornns e u .
Ay

"

'/ onoank v wrw @ naw
wer noant op are 7 sov. POINTER changes

P b P points to m. *p in 4, POINTEN changes
/" " e T. POINTER changes

Now, let us see some consequences of defining const particularly, we will look at the
const-ness of pointed type data. In a pointed type data we know that we have a pointer
and it points to a variable. So the question is, if we talk about const-ness then whose
const-ness are we talking about, are you talking about the const-ness of the pointer or the
const-ness of the pointed data. Here, we talk about two things pointer to constant data
whether data is constant, but the pointer is not or the pointer itself is constant, but the

data may or may not be constant.

Below here | just show an typical example of how we compute with pointer and pointee
we have defined two variables, so we have a pointer which takes the, if you just look in
here it takes the address of one variable and then using that | can directly change the
variable or I could I can change it through the pointer. Similarly at this line, earlier the
pointer was pointing to n now it has been changed to point to m and they can again use it

to change the value of m. This is the typical use of a pointer-pointee scenario.

(Refer slide Time: 17:23)

W}] const and Pointers: Pointer to Constant data

Consider pointed data

ned Ervor: ® A constast snd ceanst be chaaged

op = Vi /7 Brvor: p peiats to & conetaat data (n) that casnet be changed
P~ // Oxay

op = 0 // Mhay

Interestingly

it st

ne® /7 Dy

op = 8 /7 Rrvor: p peista to & ‘cosstant' dats (8) thet cansat be changed
Finally,

oart 1sa - b

st * p i /7 Brror: 1 ahis were allowsd, wo would be sble to change comstamt n

now 6 /7 Error: m s conwtant and cannst be chaaged
op = 85 /7 Weuld have besn okay, Lf declaration uf p wers walid

NOTEL MOOCs

So, with this we would next like to discuss as to how we can control these changes with

the use of const.

(Refer slide Time: 17:34)

{{a const and Pointers: Pointer to Constant data

Consider pointed data

S R ERH
posant 1at n = 6
CONNT et & p = A

0= 8 /7 Brvor: @ As constant and caanct b chaaged
2 op = 15 /7 Brvor: p pelnts to & constaan data () that caanot be changed
»p~kn; // Okay
B op =« R // Okay
P or 0y
Interestingly
It mes

T

o8 /7 Oy

*p « 8 // Brvor: p petets to & ‘cosmtant’ dats (n) thet camsot be changed
Finally,

connt 1mn n = b

ter » p o= kn; /7 Brvor: If whin were allowsd, we would be sble to changs comatsat &

So first is, if | have a pointer to a constant data. So, what we are doing here, is we have

written const before the data before the type of the value that the pointer points to. If |

write the const at this point it means that the pointed data is constant, it cannot be
changed. So, n has been defined to be a constant value. We already know an attempt to
change that value of n is an error because if n is constant, and we have defined p to be a
pointer to n. So, trying to change the value of n using p that is star p assigned 7 is also an
error. But, p itself is not a constant, that is if I want now I can make p point to some other
variable, so m is a variable here which is not a constant variable | can make p point to m
and then | can use this star p assigned 8 to change the value of m, m will now become 8,

it was 4, it will now become 8.

(Refer slide Time: 18:55)

@ const and Pointers: Pointer to Constant data

Consider pointed data

"e v
Wt Rrvor
p = hn; // Dkay
op = U // Okay o |

Interestingly

! mases 1, &

COTTR T R

neé / Dhny -
) pe

wp = 6 // Rrvor: p petets to & ‘cosstant’ dats (x) thet canact be changed

Finally,

So, now if you will look into, if | have a variable which is not a constant say int has been
defined to be a integer type variable initialized with 5 and | have a pointer p which points
to a constant type of integer value and | put the address of n into p. Now, naturally aim
assignment of 6 to n is valid because n itself is not a constant. It is also that star p
assigned 6 is valid, but if I try to do star p assigned 6 that is not valid because p says that
am pointing to a constant integer. So very interesting scenario because | have a p here
which is pointing to n. P knows, this knows that if | write star p is constant. That is p

cannot be used to change this value, but n by itself is not constant. So, n can be changed.

Now, this is valid because what you are saying is you are saying more than what is
required, you are saying that n by itself can change. So, whether I change it directly as n
or | change it through a pointer it does not make a difference because n can change, but
the pointer as said that | am restricted not to change. The pointer is said that if you go
through me then I will not allow you to change the value. So, here this is a scenario
where the variable actually can change, but the pointer gives a view which does not
allow you to change that, but if I directly go or if | use some other pointer which does not
point a constant value then we will be able to change that. Finally, if we try to do the
reverse that is if | have a constant variable n and if | try to use a pointer to a non constant

value p then however | will not be able to do this.

(Refer slide Time: 21:46)

;ﬁ] const and Pointers: Pointer to Constant data

Ervor B8 COnRTARE and caanot e changed
op = 15 /7 Brwow: p peints 1o 8 COMTAA data (1) Shat caenet e changed
P~ ku; // Dkay
wpeh (eay

Interestingly 4 {

st a
s p s

So, if we just try to illustrate then the last int case here, so we are talking about this case
if I have a p which points to n, where this is constant and star p is not constant then we
have a error quite validly, because n is a constant. If star p is not constant, star p is trying
to point to n then I can always make use of star p here to change the value of n which am

not supposed to do.

So what we learned here is a basic notion that if a value is a not a constant | can still use

it pointed to a constant to view that, but | will not be able to change it to that pointer. But

if a value is constant then | cannot use a pointer which is a pointed to a non constant
value | will not even be allowed to initialize that const pointer with the address of this

constant variable because that would violate the basic principle of const-ness.

(Refer slide Time: 23:20)

;ﬁ.} const and Pointers: Constant Pointer

Consider pointer

net Ukay ~a
wer Okay. Both n and *p xre 7 sow
P Error: p is & csomtant pointar sl canmot be shangsd

By extension, both can be conat

6 /7 Brvor: s constaat and caanet be chaaged
e Kever: p pelania o » WETANE " Aan () ThAt cansot b changed

Poean /7 BETORT P AN N CORMTART PRLATAT ARl CARROt he changed

Finally, to decide on const-ness, draw a mental line through »

It a -
TR

Next, let us look at the const-ness of the other side, what if the pointer is constant? So, if
you look in here this is where we are, we have slightly shifted the position where we had
written the const. Earlier the const was written here at this point, now the const is written
after the star symbol this says that the pointer is constant, but the value that it is pointing
to is not constant. If I draw it p is const n not const.

So, what it means that if | can easily write this n is not const, so | can change its value,
since n is not const | can use p dereference it assign seven to star p that would change the
value of n which is valid because | am not violating anything, but I will not be able to do
is the last one that is | cannot change the address that is stored in p | cannot make p now
point to a new variable m, because | have said that the pointer itself is constant this side
is constant now that is earlier the other side was constant. Naturally, if we have this then
by extension we can also combine both of this that both the pointer and the data it is
pointing to can be constant.

(Refer slide Time: 24:55)

;@‘ const and Pointers: Constant Pointer

Consider pointer

op = T /7 Daay. Both u ant »p ars 7 sow

R / Rrror: p 1e & osastamy peister asd caamot be changed

By axtension, both can be conat

Bowh /7 Brvuri o de constast and caanet be changed
op o V0 /7 BEvor: P pelne to A Cessatant ' data (8) T canmor be changed

PR /7 BETOrT poAs b CARRTANL PALATAT abd CABROt e changed

Finally, to decide on conast-ness, draw 4 mental line through »

o V6 nea-renst Py intes

So, we here we are showing an example where | write const on both sides which means
that p is a constant pointer to a constant data, which means neither p can be made to
point to any other variable other than n nor I can use p to change the value of n. So, all of

this will now become error.

Now, at the end certainly since we are writing since we are writing since we are writing a
const-ness on the pointed data or the pointer itself it is confusing at times as to where
should I write the const and what will become const by putting the const keyword. The
thumb rule is very simple, that when you have this declaration look at the star symbol in

the whole declaration.

(Refer slide Time: 26:09)

{q;] const and Pointers: Constant Pointer

Consider pointer

a4, 0= I 4 ’L \

Aat & conet p ~ Wn AV |

nes Uray g

op = Ty /7 Deay. Both n st *p are 7 s P L 4
¥

P =t // Brror: p s w osomtant pointer amd canmct he shangsd

By extension, both can be conat

At 1A B e 4 ‘ "

ST TN

&

Boe 8 /7 Brveri o ie constast and caanet be chaaged
Op w0 /7 Mevor: p peluns Lo 8 Cemsatant’ Aats (n) That camsor be shanged

Poean /) BETor: poAs b CARATART PRLATAT ARl CARROt he changed

Finally, to decide on const-ness, draw a mental line through »

o ve e canet -Puint e

Mentally draw a vertical line so if you are trying to do this you are saying const int star p
etcetera, draw a vertical line through this star symbol and see which side the const
keyword appears, this is your data side and this is your pointed side. So if the const-ness
is on the data side then whatever you are pointing to is constant. In contrast if you have
int star const p etcetera, so this is this const is on the pointer side so the pointer is
constant. So that is the basic thumb rule by which you can decide which of them is a

constant.

(Refer slide Time: 26:57)

W}] const and Pointers: The case of C-string

Consider the example

char s avr = strdup(CEIT, Daragpur®)
siria) = 'w /7 BIL Whe neme
oot 4% ar o endl

Crdapt JIT, Kharsgpar®); // Change the nane
e o el

Qutput s

NIT, Kharsgper
Y, Kharagper

To stop editing the name

SHOL KRAF ¢ akr + sRrdeplTIIY, ENaragpurt)

wnr(e) « 'n /7 Brror: Canset Bdit the nase
NEr o Wtadep(t2IT, Kharngpurt] | // Ohaage the mase

To stop changing the name

MAr ¢ cunat sty « serdep(11T, Eharagpur

nrie) « 'w // Wit the neoe

ey o« atriup (Ot JIT, Kharagpert) / Brvon: Canset Changs the aass

To stop both

cemEt char * cosat sty « svrdepd *11T, Kharagpur+)

wr (@) L /4 Brvox: Camnst BAIY the nass
e = atrdup(CJIT, Kharagper®); // Brror: Osaset Changs the nase
NPTEL MOOCs Programming in €+« Partha Pratim Das n

The examples are given below. So, you can use this and for string this is an example that
| have worked out you could read it carefully and try to understand a string is given and
if we just have a string then you can two ways change that either you can edit the string
or you change the string itself. On the code on top we show the effect of editing the

string or changing the whole string altogether.

(Refer slide Time: 27:34)

Consider the example
Bar ¢ aAr = strdhp! “EIT, Mharagpur®)
sir(e) = '® '/ e
SNt Ax gtr S% el

wir = ptrp(tIIT, Kharagpar®) | // Change the mane
UL L L

Qutput is

NIT, Kharngper
T, Kt agper

To stop editing the name
P Rl R L T er—
stTol - / Brvor: Connet BAiT the nase
VEFS"IONPT 21T, Eharngpur®) | /7 Ohange tha nane
To stop changing the name
BAE S punat sty « serdepl CTIT, Eharsgpur)
S () <N // it the neae

oty o aredept LT, Kharagpert)| // Lu-.‘ Conpet Changs the Mane

To stop both

But you can stop that if you do something like, put a const here, if you put a const here
then the string itself becomes constant, so you cannot change any character of the string.
So, you cannot like in here you could write assign n to the first symbol you cannot do
that anymore. Whereas, if you put the const on this side then you can now change every

any of the symbols in the string, but you cannot change the string as a whole.

Here you could change the string now you cannot change the string because that means
changing the pointer. And certainly you could protect both the edit as well as the
changing of the name if you put const on both sides of the pointer that is, if you have a
constant char star pointer pointing to a constant array of characters then neither it can be
edited nor it can be changed. This is an example to show how const-ness applies on both
sides. So, we have discussed the basic notion of const-ness and illustrated how const-
ness applies in terms of the pointers.

