
 

Programming in C++ 

Prof. Partha Pratim Das 

Department of Computer Science and Engineering 

Indian Institute of Technology, Kharagpur 

 

Lecture – 06 

Sorting and Searching 

 

Welcome to Module 4 of Programming in C++. In this module we are discussing sorting 

and searching. So, the objective is to look in to the implementation and use of sorting 

and searching in C and contrast them with C++. 

(Refer Slide Time: 00:41) 

 

These are the topics that we are going to discuss. 



(Refer Slide Time: 00:44). 

 

So to get started, all of you know sorting, and you must have written several programmes 

in C to sort a set of integers given in an array. So here, we just show one of the most 

common sorting algorithms known as the bubble sort. You may or may not have used a 

bubble sort; if you have done some other selection or insertion sort, it is perfectly fine. 

We are not going to get into the logic of how the sorting is done. All that I want to show 

is between the two columns; left is the C programme, right is the C++ programme. Both 

are trying to do bubble sort using exactly the same strategy, the same algorithm; and, you 

can see the only difference they have between them, is the use of the IO header and the 

std name space. So far as the whole algorithm is concerned, the code is concerned, the 

arrays and comparisons are concerned, it is just identical. So, the first lesson that we take 

is, any sorting code that is written in C can be identically used in C++. 



(Refer Slide Time: 01:57) 

. 

Now, I would like to illustrate that, if I need to sort a set of numbers or set of strings, do I 

really every time write a sorting programme myself? I do that when I am trying to learn 

algorithms or when I am trying to learn the language, but subsequently if I want to sort a 

set of numbers I would not like to write the algorithm myself; rather, I will again go back 

to the standard library and try to use what standard library provides. Now, let us 

concentrate on the left column, which is the C programme. It is using a sorting function 

provided in the C standard library, in the header Std Lib dot h. This function is known as 

Q sort. The name certainly refers to the fact that this function uses quick sort as the 

underlying sorting algorithm. 

Now, please concentrate on how the Q sort function is called. You can see that, there are 

4 parameters. So let us see, what are the things that you need to tell the Q sort 

programme, so that it can sort your data. Certainly, you need to tell where the data exists. 

So, that is the container, which is an array data here. So, that is the first parameter. Now, 

the array would have any number of items, any number of elements; how will you sort, 

know how many elements does it have or out of the containing elements, how many of 

them you want to get sorted. So, the second parameter tells Q sort that, how many of the 

array elements you want to get sorted. It means that, you always start with an index 0 and 

take as many elements as specified in the second parameter. So, here the second 



parameter is 5, which means that Q sort should sort data array from index 0 to index 4, 

which in this case happens to be the whole array. 

The third parameter is little tricky, and right now you may not understand why the third 

parameter is required. The third parameter says that please provide the size of every 

element in bytes. Now, this is an integer array, which means that every element is an int. 

So, the size of every element can be computed from using the size of operator in C, so 

you specify size of int which for a 32 bit system will pass 4, since int, typically in 32 bit 

is represented by 4 bytes as the third parameter. May be difficult for you to understand 

exactly what we need this, but the basic logic is that, since Q sort does not know what 

type of data your array contains, it could contain int type of elements; it could contain 

char type of elements; it could contain pointed type of elements; it would contain 

structure type of elements; it is not possible for Q sort to know after it has got the address 

of the zeroth indexed element where should it find the first indexed element. So, if it 

knows the size of the element it will be able to add that as an offset to the starting 

address of the array to get the first element. Then it can again add that same size of int 

offset to the first element’s position to get the address of the second element and so on. 

So, that is the implementation for which you need this information. So, that is the third 

parameter. 

The fourth parameter is the most interesting. The fourth parameter is a function pointer. 

In module 1, you will remember we have talked about function pointers in depth. We 

have recapped that and if you just move your attention to the top, between the includes 

and main you find that a function pointer compare has been defined, implemented for the 

purpose of use by Q sort. Now, what is the role of this compare function? This compare 

function will take 2 values compare them and say which one the first one is smaller or 

the second one is smaller. So here, we are shown a compare function, where we are using 

less than as a comparison. If the first one is smaller than the second one, it will return it 

true and otherwise it will return a false. This is the basic purpose of the compare 

function. 

Now you will wonder why do I need to do such a complicated thing as writing a separate 

function pointer function and passing that function pointer. You will please have to 



understand that, when Q sort was written in the library or if you want to write a Q sort 

kind of function now and you are not told what kind of elements we will need to sort, 

how will you know how to compare those elements? For example, int can be compared 

very easily, but if I have say instead of int, if I now give you an array of strings. Now, the 

array of strings cannot be compared simply by writing a less than or greater than in C. 

We are not talking about C++ string right now, which you already know has a 

comparison operator. So, in C if I have to compare strings my values are actually pointed 

to character, but my comparison has to happen to the use of some STRCMP function. 

Now how would Q sort know, Q sort did not know what kind of data you will give Q sort 

to compare them, therefore Q sort also does not know how to compare 2 such data items. 

And it is your responsibility to provide that compare function to Q sort. 

So you need to have this fourth parameter, which is the compare function pointer. If you 

look into the header, the signature of the compare function pointer you see something 

which is even more disturbing. You can see that the parameters are declared as of const 

void star that is there const pointers to constant data of unknown type, why is it that? 

Because again, Q sort could not have put a signature for the compare function pointer, 

because it does not know the type of data items. So, all of these assuming that you have a 

pointer to some type which is not known and, since you do not know the type while you 

actually want to do the comparison in the return statement of the compare function, you 

will have to first tell the compiler that, what indeed I now have is an integer. So, you cast 

the void star pointer first to int pointer, then you de-reference that int pointer to get the 

integer value and then you compare the two integer values. 

So, so much need to happen for the Q sort to be used. And that is one of the reasons 

possibly that even though Q sort is available in the C standard library as a default sorting 

algorithm, the use of Q sort has not been that popular in the C community. Often, people 

prefer to write their own functions; bubble sort, selection sort or insertion sort, merge 

sort, whatever, and given the data type of elements that they want to sort and just use 

that. 

Let us now look at the right side of the column. The C++ way of doing it, I will not get 

into the differences in terms of IO’s you already know that. What you must focus in 



terms of include is, we include another C++ standard library header called algorithm, 

which is very very interesting. Algorithm is a header, which contains a whole lot of 

algorithm codes that you need to often use in your programmes. So, algorithm contains 

one of the components is the sort algorithm. So, what you call Q sort in C, in C++ this 

component in algorithm is called sort. 

We are again sorting the same data; we are again sorting in the same order. What I need 

to specify for sort, let us look at the parameters. Certainly, the container which is same as 

what I did in Q sort. The second I need to tell, how many elements from the beginning, 

here this we specify in a little bit different way. In Q sort, we just specified the number of 

elements; here we pass the pointer to the first element, after point of attention. So, we 

pass data plus 5 which means that we pass the pointer to the index 5 elements, which is 

just beyond the part of the array that we want to sort. Which in other words, means that 

you sort 5 elements starting from data? We will look at these details later on, this is 

called a range in C++. 

The third parameter as of Q sort is not required, because as you have seen before also, 

that C++ compiler can deduce things based on the type. So type, it knows that data is of 

int type array. So, the elements will be of int types. So, you do not need to separately 

specify the size of int as a parameter. The third parameter of sort is same as the fourth 

parameter of Q sort that you need to give the comparison algorithm. This certainly 

cannot be deduced, because depending on which type of data you are sorting, your 

comparison strategy would be different. But, what is significant is, if you again move 

your attention back to where this compare function is defined in the C++ part. 

Now you do not have that complication that you had in C, of using parameters which 

were of const void star type or the expression which does a whole lot of casting and de-

referencing. Now, you can declare the parameters exactly as you declare in case of a 

normal function, int i, int j and in the return you simply compare the, whatever that 

comparison logic is we will just write that here. It is pretty much like a normal 

comparison function and that function pointer; function name will be passed as a third 

parameter. You can do this in C++, because of several features that C++ introduces 

which we will slowly introduce to you. So, you will understand why this was not 



possible in C, but it is possible in C++ to write the compare function with any type that 

the sort function did not know beforehand, but can still be able to absorb that. 

So, with this certainly, it becomes a lot more elegant and efficient to use the sort 

programme from the standard library. And the consequence therefore is that, the C++ 

programmers really write their own sorting programmes, they just make use of the sort as 

is given here. There are small nuances to note; the convention of the direction of sorting, 

whether it is decreasing order or increasing order differs between the Q sort 

implementation and the sort implementation. So, you will if you again focus on the two 

compare functions that we have written, you will find that in C we have used a less than 

to be true, in C++ we have given greater than to be true because, in both cases we want 

the sorting to be done in descending order. So, this is just a matter of convention that 

exists in C++ sort. 

(Refer Slide Time: 14:53) 

 

This is just another version of the sort. Here, if you look into the, particularly the call of 

the sort function, you see that, the first two parameters are there, but the third parameter 

is not there that is, the compare function is not provided here. This is a short cut that C++ 

standard library allows you; is if you are trying to sort arrays of type which is known to 

the C++, that is of the built in types then it is optional to give the comparison function. 



The comparison function is not necessary to be provided and if you do not provide that, 

then by default the sorting happens in the ascending order. If you still want to sort this 

array in descending order, you will again need to provide the compare function because 

your direction of comparison, that is whether the first parameter being greater than the 

second is true or otherwise, will change between the ascending sorting and the 

descending sorting. 

(Refer Slide Time: 16:08) 

. 

Next, we will move on to Binary Search. We all know that, a binary search is a very 

frequently used algorithm in programming, which given an array of elements, which are 

already sorted. Binary search can find out whether a given key exists in that array, if it 

does then it can also say, what is the position of that element in the array? This is, of the 

simple searching mechanisms, this is one of the most efficient one. And, both C and C++ 

standard library have mechanisms to do binary search. In C, it again is available from Std 

Lib dot h. It is a function called b search. In C++, it is again available from component 

algorithm and it is called binary underscore search. If we will look into how this is used 

in C look on the left hand side, by b search the first parameter is a key. The key has to be 

passed as its address, so you pass ampersand key. 



There is a reason why you need to do this, because again, you do not know the type of 

elements that you have in the array, and therefore the type of the key that you want to 

search. So, you do not know the type of the variable key in general. So, you cannot write 

b search with that so you again make use of the fact that you can use a pointer to int and 

consider that to be a pointer to void. So, b search uses the first parameter which is void 

star. And that is the reason you need to give it the address. The second parameter is, the 

array in which you want to search, certainly this has to be sorted. The third parameter is 

the number of elements. This is pretty much like Q sort. The fourth parameter is the size 

of every element and the fifth parameter is the function pointer of the comparison 

function. 

Point to note is, binary search has to make a three way decision, unlike sorting where 

you just need to know whether it is less or is not less, but binary search has to when it is 

looking at a particular element in an array, it has to deal with 3 possibilities. One, is the 

element that it is looking at may actually be equal to the key, actually may be the key so 

then you are done with the search. So, you do not need to do anything you just return that 

index value of the position of the array. Second, it could be less than that. If you have 

your array sorted in the increasing order and your value is less than the element that you 

are looking at, your key is less than the element that you are looking at, you know that 

you have to look at the left part of the array. And in the third case, you have to look at the 

right part of the array. So, your comparison function has to be a three way function, 

pretty much like the STRCMP function we have in the string dot h standard library in C. 

So on top here, I show how you can write such a compare function for the case that we 

are dealing with which returns minus 1, 0 or plus 1 as the case may be. And, all the 

nuances of using parameters as void star pointer and casting them, dereferencing them, 

as we did it the case of Q sort, will also be involved in this case as well. 

Let us look at the C++ form for this. The binary underscore search function from 

algorithm component takes the first parameter as the container, which is the data, the 

second parameter is the end of the range. This is pretty much like sort as we have seen. 

And it takes the third parameter, which is key. And here, I am showing an example, 

where the compare function is not explicitly provided, because as I have already 

discussed in case of sort that, if you are doing a search for elements of built in type the 



compiler already knows how the comparison is done. So, you do not need to explicitly 

put a function pointer for comparison. And, with this, the binary search will happen. If 

you compare these two you will find, the ease of using the binary search in C++ is 

immensely more compared to the ease of using it in C. And again, for that matter binary 

search in C++ is very often used and nobody will write a programme for doing a binary 

search for any type of data container that someone has. 

(Refer Slide Time: 21:24) 

. 

Specifically, in this algorithm library which is a very interesting library, because what it 

is saying that, if you are using C++, we give you a set of whole set of common 

algorithm. So, we just saw how sort and search can be used from algorithm library. There 

are several others, like replacing elements in an array, rotating the order of elements. 



(Refer Slide Time: 21:48). 

 

So, these are examples of replace, rotate codes. We will not go through step by step 

through them. By now, you should be familiar to use to understand this. Please look up 

the manual or the book, for the details on these algorithms and start using them. You will 

really find that, writing things in C++ using the algorithm library becomes very very 

easy, because most of the common algorithms are already available and very easy to use. 

(Refer Slide Time: 22:20). 

 



In this module, we have shown that how basic sorting and searching can be done in C++ 

with a much better ease and efficiency and we particularly illustrate that, unlike C where 

we often end up writing our own sorting code and searching code, in C++ there would be 

hardly be any reason to do so. No matter what kind of container and data we are using 

we will show that this is also true for several other algorithms that we need to use, 

including merge, swap, remove, all of these, different ones. And, I would encourage you 

to study these algorithm components and start using them. And then the beauty of the 

whole thing is, you really do not need to know a lot of C++ to be able to use them, 

because their use their design and the way they are organised are quite intuitive and you 

can just study from the manual and start using them. 


