
 

 

Programming in C++ 

Prof. Partha Pratim Das 

Department of Computer Science and Engineering 

Indian Institute of Technology, Kharagpur 

 

Lecture - 56 

Closing Comments 

 

Welcome to module 40 of Programming in C++. As you know, this is the last module of 

this current course. So, we are not going to introduce any new material in this module. I 

would rather summarize the overall course, and try to make some closing remarks for 

you to move forward. 

(Refer slide Time: 00:51) 

 

So, the objective of this module would be to review quickly what we have done, what we 

have not done in the C++ course, in the 8 weeks. And I would like to put in few points 

regarding how we should be preparing for your examination, and what should be your 

next course of action beyond this course. 



 

 

(Refer slide Time: 01:21) 

 

So, this is the module outline and we get started here. 

(Refer slide Time: 01:26) 

 

So, the fun really starts happening when we start coding, the same concepts as in the C 

program in terms of C++ style. And start using different stls, and all other different 

futures and writing equivalent program. And through this, we really look into how C++ 



 

 

can improve the overall programming experience. With this foundation, what we covered 

is what we called C++ as better C that is the procedural features of C are extended in 

C++ to provide a better procedural programming language. This is required from two 

perspectives; one is just to make things better to work with, and second the most of these 

features the procedural extensions are critical to support the object-oriented features. 

So, if we can just recall we have taken a look into the const-ness of values and variables 

which is critical in terms of a getting read of manifest constants being able to maintain 

better type all through the C++. And also in terms of introducing variety of notions of 

const-ness later on in terms of member function and so on. As you know by now is the 

const-ness turned out to be such an important improvement in the C programming that C 

language standard actually went forward, and have taken const as a part of C standard 

back way from C++. 

Besides that we saw a whole lot of other features as better procedural features. We are 

talked about reference parameter, we talked about overloading. And very significantly 

completely new operators for memory management, the operator new and operator 

delete, the array new, array delete and so on. So, combined with all these, we have a 

procedural extension of a C, these features do not inherently have any object oriented 

concept, but these make us C kind of procedural coding in C++ much better. 

With that foundation of better procedural support, we moved onto discussing object-

oriented programming or op in C++. Certainly this was done at a detailed length we 

talked about classes, their members, the access specifiers, constructors, destructors, 

lifetime and all of these which basically all these come under the generic encapsulation 

paradigm of object-oriented programming. Where you encapsulate in two ways, one you 

encapsulate by packaging multiple data members in terms of an object, and only try to 

provide a set of behaviour, set of member functions to that. And with a help of visibility, 

the access specifiers, you make sure as to which part of the object is visible accessible to 

which members or which agents. 

On top of that in support of object-oriented programming, we introduced a whole lot of 

very important features like overloading of a member functions. We talked about friend 



 

 

member function, which provide a somewhat a different kind of visibility access 

visibility than the public or private visibility. We talked about static data members, and 

member functions. We talked about namespaces. Again namespace in that way may not 

be consider a strictly object-oriented features, but as it turns out that one we when we 

have to introduce classes they themselves introduce some kind of a namespace. So, a 

namespace is a logical consequence and certainly it gives a much better source 

organization code, organization options in terms of C++ programming. 

So, with all these together, the main point at up to this part of the course has been that we 

can with the use of the object oriented features and now empowered to define a data 

types ourselves. So, the main achievement up to this point up to this point in the course 

where we just to object-oriented encapsulation overloading kind of features is that we 

can now built our own user-defined data type. And this data types could be as complete 

in the functionality as the built in data types like int, char, double and so on. 

And we saw how all these different features of overloading, and friend functions and 

operator overloading specifically can be used to really have data types, which can be 

used to write expressions. We have consistently try to use complex data type as an 

example, of course, you can extend it you can do similar things for other data types as 

well like fraction like vector matrix and so on. 

And built your own required data type, wherever you want and there is no end to what 

you can achieve in terms of this data types. And certainly while building the data type, 

there are certain point to keep in mind which I would specifically like to remind you off 

is a fact that while you bring a data type. And for that, you are overloading the operators; 

try to keep the semantics of the operator as close to the semantics of the operator in built 

in types. And do not make it very different, for example, if you are defining a set data 

type, and you are overloading the plus operator, then it would be intuitively much better 

to associate the plus operator with union of sets than intersection of sets or say the 

difference of sets and so on. 

At the same time, in terms of the signature, it should remain as close to the built in data 

type operators as possible in terms of whether it returns the result through value, or 



 

 

through a reference, or through a constant reference and so on. And we have discussed at 

length in terms of what difference nuances mean. Other notable points here is a detailed 

or detailed discussion on copy semantics or detailed discussion on object lifetime and or 

the variety of free functions that the compiler provide you to support ease of 

programming. 

Moving on next, what you took up you forms another core aspect of object-oriented 

programming called inheritance or generalization specialization hierarchy. And though 

this course did not have enough opportunity to discuss object-orientation per say as a 

design paradigm, but still we have been able to see that in terms of real life world, there 

is a whole lot of situations where the specialization generalization between the problem 

domain within the problem domain between different concepts is just a natural 

phenomenon. 

And in terms of the inheritance features, in terms of being able to derive a class from a 

base class, and in that process override the base class member functions with new 

member function and overload them if required and reuse them if you just inherit and so 

on, we can provide a whole lot of complex semantics to the natural world in a very 

organized and aligned manner. And this probably is inheritance probably is one of the 

key features of C++; particularly of object oriented aspects of C++ coupled with 

encapsulation, overloading. And inheritance provide you the core frame work in which 

the object-orientation can be very extensively modelled and programmed and 

manipulated in terms of the C++ language. 

Next, what do we looked at is what is more commonly called polymorphism. Though the 

use of the word polymorphism will caution you has a very variety of different meaning 

in C++, but here what we meant by polymorphism is primarily dynamic binding. This is 

a very different kind of a feature that we took a look into where the type of a pointer the 

static type of a pointer or the static type of a reference alone does not decide the 

particular binding of a member function. 

The type of the member or the specific member function being bound with a pointer 

dreferencing or a reference access is dependent on the actual object being pointed to at 



 

 

the runtime that is a dynamic type of the pointer, dynamic type of the reference. And that 

has given us the ability to really build a big class hierarchy with this common base class 

and with a capability of virtual functions which can do runtime delegation of methods to 

appropriate runtime objects, the pure virtual function, abstract base class those are very 

key concepts that were introduced in this part. And we specifically spent time to also 

understand, how this virtual function mechanism work in terms of the virtual function 

table and how does it ramifying in terms of the multiple inheritance. 

So, these all together form a very strong object-oriented foundation to the C++ language. 

And then in the next two parts, so we spent substantial amount of time in looking into 

two features, the type casting and exceptions, the features that become critical not only to 

support better object-oriented programming, but also to overall improve the experience 

of programming. So, in type casting, we talked about the possible conversion of objects 

at the runtime, at the static time based on their static type or their dynamic type and so 

on. 

That is what we saw a whole lot of rules, there the implicit casting rules, the C style 

casting, what are the issues of the C style casting, and why, particularly cast operators the 

four-cast operators of which the static cast is certainly the most widely used. The most 

possible kind of static time casting can be done in terms of this static cast or the const 

cast, which applies to C v qualification or the dynamic cast which applies to the runtime 

casting particularly for down casting purposes. 

So, you can see that the cast operators basically provide whole lot of different semantics 

based on the different context of a casting. And as you get more and more experience in 

C++, you will discover for yourself that one particularly since now you also know 

template that actually the cast operators are nothing but template definitions. So, In fact, 

it is not only that these are the four-cast operators that you have, but it is possible that 

you can define your own cast operator and define semantics for that. 

So, casting or changing the type of an object or basically using an object of one type in 

the context of another is a very critical features, which is required for supporting strong 

object orientation, because a strong object orientation has meant see into a very strongly 



 

 

type language. And therefore, there is often a context of using an object of a certain type 

in the context of another type. So, in that reference the type casting discussions and type 

casting would prove to be very useful for you I believe. 

Exceptions are from a very different flavour, they for the first time address the question 

of error situation, exception situations and their handling in the comprehensive manner in 

terms of the language. Now, we all know that if we write software then the software 

might not work. So, error handling or being able to debug the programs efficiently is a 

part and parcel of developers owns life, is a part and parcel of a program life cycle. 

But unfortunately the C language does not provide in a built-in support in the language 

for doing handling all these you know unhappy paths, all these error paths and a 

synchronous, asynchronous the error introduce you to logical reasons the error introduce 

you to system configurations and all that. So, we took a very detailed look in terms of 

what C provides, what is the lacunae they are in and in view of that we try to understand 

the basic semantics of try throw catch exception clauses and how does the C++ provide 

that. 

And again exceptions are a mechanism which really completes the whole story of object 

oriented programming much easier, because exception really make sure that it is no more 

necessary that you keep talking about doing certain operations and then tracking whether 

the operations has been correct or not. That if you provide the correct context of try 

clauses and put appropriate catch handlers, then you can write the whole code without 

really thinking of the exception situations and fill in the catch handlers for the different 

exception situations in a completely separate code base, so that being a much better 

clarity to that. 

And at the end, of course, we could spend very little time compared to the depth of this 

particular topic. We just spent two modules, but this by itself could be become a 10 

module course is the factor of templates. Templates are completely different concepts in 

terms of C and C++, because they are they are certain mechanisms by which you can 

write a code where one or more variables or parameter or class types are not known at 

the time of writing the code or at the time of compiling the code. The type could be 



 

 

specified subsequently when you actually use that function, when you actually use that 

ah particular class and we saw examples of this through simple max, swap kind of 

function and stack kind of data structure. So, templates give a different kind of 

polymorphism. 

So, if you just look at then templates are a can be can be looked at in multiple different 

aspects one is it could look at it from the aspect of polymorphism, so overloading gives 

us a certain kind polymorphism which is called the static polymorphism. The dynamic 

binding or what we have ‘return’ here as polymorphism is a dynamic polymorphism, 

which is basically what happens in a class hierarchy. And template gives you another 

kind of polymorphism because that is a template polymorphism, because here again you 

have a single form of a function written in terms of the template of the function or single 

form of a class, but you can use it for variety of different purposes. 

So, when you have a template function instantiation say an implicit instantiation then 

there is again the same question of binding which we had to answer in case of 

overloading which we had to answer in case of dynamic polymorphism we again have to 

answer that. So, that is a very different kind of features that comes in templates are code 

generated they actually generate code and then compiles that code. 

So, if you are able to design templatized code in a crisp efficient manner then your basic 

effort in programming, your basic effort in debugging gets substantially reduces because 

one code can be used in not only in the multiple contrast of type by throughs 

overloading, but you could keep on using it on also for the types that will come in future. 

So, templates are primarily introduced in C++ for this purpose of generic programming 

or template meta programming. So, if we look into from that aspect then we will actually 

see that C++ is a combination of three major paradigms of programming which is 

procedural, because it includes the whole of C and the better C. So, that gives you a 

complete set of features and lot of powers in the procedural terms. So, it is always very 

efficient to write algorithms in C++. 

It is known for its object oriented features, so it is called an object oriented programming 

language as well. So, it strongly supports the object oriented paradigm though it as some 



 

 

lacunae in that and those may be beyond the discussion of this course. But certainly it 

cannot do few fundamental things of object orientation like reflection, but what is 

important is it also supports a third paradigm which is called a generic programming 

paradigm, which is a code generation paradigm where you could write type parametrized 

codes and generate code based on instantiation. So, you can see that C++ basically develt 

on three different paradigms and therefore, it is very rightly called a multiple paradigm 

language. 

Of course, if you refer back to C, the earlier version of C++, older versions of C++, then 

you might feel that it is just procedural and then object oriented, but over and over the 

years, the template features the generic programming features in C++ have been really 

gaining in strength. And though we have been using primarily and our discussion, we 

have been talking about C++ 99 which is a 17 year old standard which was a marginally 

revised in C++ 03, which means the 2003 standard. But subsequently, we have had 

significant progress in terms of C++ standard. We have two new standards now; one is 

called C++ 11 which was finally, actually released in 2012; and we have another 

standard, the most recent standard is C++ 14 which was released last year in 2015. 

And we have not discussed as upon any of these features from C++ 11 or C++ 4 which 

give you a whole lot of very strong additional parameter to strengthen all of these 

paradigms primarily the object oriented paradigm, and the generic programming 

paradigm. And brings it lot of strong concepts into the existing features and still 

maintains complete backward compatibility with the earlier C++ 03 language. So, this is 

a basically what I would like to just point out that the whole thing that we have covered 

is just kind of the small part of what is C++ today, and the way it can actually benefit 

you. 



 

 

(Refer slide Time: 22:55) 

 

So, having said that I would also like to point out a few features; now what we have not 

covered is very difficult to list out because C++ is actually so huge that it is very difficult 

to say what we have not done. It will not fit into one slide or couple of slides, but here I 

have just highlighted some of the aspects those are very, very important and you should 

going forward take initiative to learn them better. So, one certainly is some of the typical 

programming styles that have emerged based on C++, one is called functors. 

Functors are very interesting design, they are called function objects. So, we know 

functions are what can be called and objects are what can be instantiated. But we have 

new concepts here where it will say that a function can be instantiated, it could be an 

object it could have a state. So, it simple a function calls is basically shown in terms of 

the function operator which is like this. So, a functor object is nothing but a class 

definition or an object where this function call operator itself is overloaded. So, it is the 

does not is not really as simple as I am saying, but it is almost that. And once you can do 

that you can have a lot of benefits. 

And the next thing that we have not significantly done accept for sparingly using certain 

data structures like vector and list and stack is the standard template library which is 

significantly based on the concepts of functor. And it is very critical that you explore and 



 

 

a slowly get more and more familiar with this standard template library, so that your 

power in being able to write good C++ code also improves. Couple of other very you 

know important aspects which we did not get time for is resource management 

particularly concepts of smart pointer memory handling and so on. C++ coding style is to 

how you should be writing codes in C++ certainly not the C way. Design patterns, which 

tell you, what are the reusable designs? Many of the practical systems will need you to 

make C with C++ may be there is an existing code base of C you cannot throw all of that 

away and write C++. 

So, you as you write certain parts in C++ you continue to have the remaining parts in C. 

So, how you make them is a big question. Management of source code C++ has given 

features like as you saw namespace and export and all that. And with that you can do a 

much better C++ source code management and certainly for engineering purposes you 

need to learn a whole lot of C++ tool. So, there is the list is much, much longer. I have 

not talked about in this any features which C++ 11 or C++ 14 have introduced these are 

all aspects of C++ 03, but it will be good overtime, if you can really learn them. 

(Refer slide Time: 26:12) 

 

So, if we try to summarize us to what we have learned. We have learnt the first is the fact 

that C++ is a multiple paradigm language it is procedural, it is object oriented and it is 



 

 

generic. So, in future going forward from tomorrow as you do C++ programming, 

always try to identify which paradigm you are working in, and how do they makes. A 

second aspect is reuse is the key in C++. If you see the whole gamut of features as we 

have seen then there C supported things like macros and library functions only this is 

what you had in C. 

And then in C++, we have function overloading, the static polymorphism, the dynamic 

polymorphism other kinds of reuse options and then when we do templates and as you go 

into STL, you will find a huge amount of reuse here because now, you are writing one 

max function with a parameterised type, and that will work for not only the built in 

types, but for all future user defined types that you will come across with. 

Design patterns are another aspects of reuse where you not only irrelevant limited to 

reusing code, but you try to reuse the pair designs as well. Certainly the other aspects 

that you should have learnt well, and is designing good data types is a key for good 

programming in C++, because C++ is strongly type and everything that you want to do, 

you want to make a type for that. 

And while programming in C++ you should keep an eye on the efficiency because C++ 

happens to be the most efficient language generic program I mean general purposes 

programming language today, even it is more efficient than C. Most experiment show 

that an equivalent code corresponding to the C code written in the C++ would run 

anywhere between 50 to 60 to 100 percent faster than the C code. So, efficiency is a key, 

safety is a key, and certainly all different exceptions and all those add up to the safety 

features and clarity is a major factor that it should be very clearly understandable. 

So, in terms of the take back key take back I would like to like you to ponder over this 

points and I would finally, make one caution which just pardon me for saying this, but 

have been dealing with budding C++ programmers for last possibly 20 years. And what I 

find is a good tendency that the programmers have is actually use the C++ compiler, but 

write code in C. 



 

 

I do not mean using the syntax of C, you can use still use the syntax of C++ you can still 

use objects and specialization and all that, but the way you do the design is a C style of 

design. So, I have regularly try to show you the comparison between C style of solving 

problem and C++ style of solving the problem. Please refer to those please refer to good 

code solutions, and make sure that when you use C++ you write the code in the C++ 

style taking full advantage of the multi paradigm language and do not happen to just 

write a C++ compiler based code with C style. 

(Refer slide Time: 29:39) 

 

Finally to prepare for your examination these are the routine things; watch the video, 

revise the assignments and solutions. We will provide explanatory solutions soon, 

practise lots of lots of coding that is a key of learning this. And certainly design and 

implement complete data types, I mean we have done complex, these are some of the 

sample data types which I can where glimpses we have done, but you can practise by 

doing this data types at length. And if you need to refer to books these are the couple of 

books that I will recommend you to follow. 



 

 

(Refer slide Time: 30:17) 

 

Going forward, beyond this course, I could tell you lot of things that you could do, you 

could learn the topics that were covered. But the core things you must breathe 

programming regularly code and implement systems, read lots of code that these two are 

very, very important to learn C++. And beyond that these are all the futures studies that 

you can do. It is good to learn other object-oriented languages to understand one 

language better. So, learn python, learn java. If you get an opportunity and go through 

object-oriented analysis and design UML for modelling the system software engineering 

and here are some of the very good books which deal with C++ or some of this related 

topics. 



 

 

(Refer slide Time: 31:03) 

 

So, with that, I would to close and summarize simply saying that the course on C++ is 

concluded. Wish you all the best for your examination and beyond that to become a very 

efficient, proficient and prolific programmer in C++. 


