
Programming in C++

Prof. Partha Pratim Das

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture - 50

Multiple Inheritance

Welcome to module 35 of Programming in C++. In this module, we will talk about

Multiple Inheritance in C++. We have already discussed the inheritance mechanism in

C++ at length; we have also discussed dynamic binding or polymorphism in the context

of polymorphic hierarchies.

(Refer Slide Time: 00:53)

So, we will here try to specifically take a look into the multiple inheritance aspect of

C++.

(Refer Slide Time: 01:01)

This is somewhat advanced topic. So we would cover the multiple inheritance at a top

level, and we will live some of the final issues as exercised to you all. This is the Module

Outline and it will be available on the left of every slide that you see.

(Refer Slide Time: 01:29)

Multiple inheritance is a specific form of inheritance where a particular class has two or

more base classes. We have seen the representation of inheritance, so TA is a student we

know how to represent that, if we see this I am sorry, if we look at this part then we

know it represents TA is a student. Similarly TA is a teacher, so that represents it here.

This is a scenario where a TA or Teaching Assistant is a student, she attends courses and

tries to complete some degree, at the same time she helps some course in terms of

tutorials assistance and assignment evaluation and so on. So she also performs a number

of operations that are usual for the teachers. So given this we will say that the student

and teacher both are base classes of the TA. And when that happens we will say that we

have a situation of multiple inheritance.

(Refer Slide Time: 02:47)

So, here we show another example of multiple inheritance. There is an employee class

which is kind of the route class where all employees of an organization belong, so we

can say that manager is a employee. This is represents manager is a employee. We also

can say that director is a employee. So, manager manages, director directs the policies of

the company. Then we have a managing director, who is a manager as well as a director.

So, there is a situation of multiple inheritance that will happen here. When multiple

inheritance happen then two things would happen one is every individual inheritance

involved in that multiple inheritance will inherit everything in using the rules that we

have learnt for inheritance, but in addition there could be some complications which we

will have to discuss.

Then usually if we have a multiple inheritance then it is common that we have some base

class which is common between the different classes which worked as a base for the

multiple inheritance. So, here we see some kind of a diamond structure being created

where we have the final leaf level class of the derived class here, we have intermediate

base classes here, which the derived class of the leaf class actually inherits. In turn, these

intermediate classes specialize from some combine concept. Because certainly if we are

inheriting in a multiple way then this managing director certainly is multiply inheriting

from managing and director because it has some commonality with both. So it is

expected that manager and director themselves will have certain common properties and

certain common operations that are here represented in terms of employee.

In terms of definition of multiple inheritance or multiple inheritance in C++ it is not

mandatory to have a common base class, but it is typical that we will often have a

common base class representing the whole situation.

(Refer Slide Time: 05:17)

So, we will go into the actual syntactic details. We say generically derived is a base 1,

derived is a base 2, this is a generic scenario. And when we have that this is a class base

1, this is a class base 2, the two base classes. And we write the derived class or the

multiply inherited specialized classes; public base 1, public base 2. Earlier, when we had

single inheritance if there is a single inheritance you just stop here, here we continue we

use a comma and continue to write the next base class which is also inherited by derived.

It is not that though I am showing examples where there are 2 base classes, but it is not

limited to 2 base classes I can have two or more any number of base classes in a multiple

inheritance scenario.

And also as we know that the basic inheritance mechanism in C++ that is the inheritance

mechanism what I mean is, is a relationship is represented in terms of public inheritance

and we have heard long discussions regarding what does that mean. But at the same time

we know that there are other forms of inheritance in C++ particularly something which is

known as a private inheritance which changes the visibility of the base class members in

the derived class by restricting them to the private access alone. We saw that this is gives

is gives us something like a semantics of is implemented as kind of a semantics where

we try to represent that if we are inheriting in private from a base class then all that we

are saying that this base class actually implements the derived class.

So while we do multiple inheritance it is not necessary that these will have to be public,

these could be mixed if you in fact all of them could be private in which case it will

mean that both base classes are implementing certain parts of the derived class it could

also be that this is public and this is private so if that be that the case then it will mean

that a derived is basically specializing from base one in the sense of ISA relationship.

Whereas, the class base two implements or helps in implementing the class derived, this

is a basic mechanism that we have.

(Refer Slide Time: 07:55)

So, we will try look at the semantics. I would suggest that you compare this slide with

the semantics of inheritance that we had done earlier. All those semantics are maintained

so that as you move from single inheritance to multiple inheritance the basic properties

remain same. So, the derived class now inherits all data members of all base classes. It is

not just one base class, it inherits all data members of all base classes and it may add new

data members. It inherits all member functions of all base classes again it can override or

any member function of any base class it can overload any member function of any base

class and so on. All these were earlier, this context of multiple base classes were not

there so the semantics did not have that, but now since there are multiple base classes all

of these will be possible. So, inheritance will mean that all properties and operations of

each one of the base class will be inherited and they can be suitably overloaded or

overridden.

Access specification will similarly have same semantics of being private, private being

completely restricted to the base class. So, the derived class will not be able to access the

private data members of any of the base classes. If I use protected for some data

members of a base class then those data members would be available in the derived

class. In terms of construction and destruction, we will see in terms of constructor. All

base class objects will have to be constructed, because all base class objects will become

part of the derived class object. Now, we have two or more base classes that the derived

classes is deriving from so we also need to understand the order in which the

constructors of these base classes will get executed.

So that will be in terms of listing order as we will see and when it will come to the order

of destruction then the same principle that we had seen earlier that the first that is the

derived class is destructed, then the base class is destructed, since there are multiple base

class objects. So they will be destructed in the reversed order in which they were

originally constructed. This is a summary of the semantics for multiple inheritance there

is some more details into that which will come through as we go through the examples.

(Refer Slide Time: 10:30)

We start with the specific semantics of data members. So it inherits all data members of

all base classes may add new data members. Now in terms of the layout therefore, we

have discussed about the layout that, in the layout if a derive class inherits from a base

class then it contains an instance of the base class objects. Now, since there are multiple

base classes so it will have one instance each for each of the base classes. Again, like in

the case of some single inheritance the C++ does not guarantee the relative position of

the base class instances. How they will be organized whether first the base class objects

will be there then the derived class object members will be there and so on that specific

order is not decided not given by the standard.

(Refer Slide Time: 11:28)

If we look into the instance you have a base class b 1 with two members i and data. I

have another base class b 2 with two members; j and data. And I have a derived class

which derives from base 1 as well as base 2 and it adds a member k. If I look at one

object of base 1 type it will have a member i and a member data, if I look at the object of

derived base class b base 2 then it have an instance like this it will have a member j and

data. So when we construct a derived class object will have an instance of the base 1

object which one class will have instance of the base 2 class and will have whatever data

members we have added in the derived. So, you can clearly see that it is just a direct

extension of the semantics of data members that we had or the semantics of layout that

we had in case of the single inheritance.

Of course, as I said there could be some pitfalls. For example, as you can see here that

base 1 has declared a member data and base 2 also has a member by the exactly the same

name. Since base classes are independent of the derived class you cannot control that

they would not have members with the same name. When they have members with same

name so the object derived this object has two data members by the same name. If I say

that my object is derived d then I want to write derived data which I am authorized to

write because data is protected here as well as it is protected here so derived class has

access to them.

But if I try to write this certainly the compiler will say that I am confused, because there

are two members by the same name. There is a case of ambiguity so if two base classes

two more base classes have data members by the same name then the responsibility

would lie with the programmer or the designer of the derived class to resolve that

ambiguity. You will have to refer to the members explicitly with the class name qualifier.

This will not be acceptable by the compiler, but I can write d dot base 1 colon colon data,

if I write this it will mean this data member or it will mean this data member in the object

if this is d. But if I write base 2 colon colon data, d dot base 2 colon colon data then it

will mean that this data member so that resolution additionally would required to be

done. This is one added complexity that will have in terms of the multiple inheritance.

(Refer Slide Time: 14:39)

Now, let us move on to the Member Functions - Overrides and Overloads. As I already

said the all member functions are inherited from all base classes and you can override

any member function, overload a member function from a base class. And like in single

inheritance the static member functions and the front functions are not inherited by the

base class here as well.

(Refer Slide Time: 15:09)

If we look at an example, just look at this carefully the same set of base classes; base

class base 1, class base 2, and class derived which specializes from base 1 as well as base

2. Here, I have two member functions f and g, and here in base 2 I have a member

function h. And what I have done is this is f int in the derived class I have included a

member function with the same signature which means this is a case of overriding. So,

the derived class is overriding the f member function from base 1. Base 1 also has a

member function g and derived class has no mention of any member function by the

name g, therefore it inherits g simply and would be able to use that. And when it uses g it

will mean the g member function of the base 1 base class. Base class 2 has a member

function h and the derived class introduces a member function h with the different

signature. We know what will be the effect, this h new h derived colon colon h will hide

base 2 colon colon h which was taking integer and now you will be able to call h for a

derived class object with a string parameter. So this is a case of overloading. This is

simple that derived class can have a new member function e added to the kt and that can

be used.

In this context, if we have a derived class object c if I do c dot f 1 then f function in the

derived class will be called because base 1 colon colon f have been overridden. If we call

c dot g it is a member function of base 1 will be called because it has been inherited, if

we called c dot h with, this is where I have used a constant char star kind of parameter

which will get cast automatically implicitly to string. So overloaded h function in derived

will be called not the base class function because that has got hidden, and if I call c dot e

with character a then it will call the e member function that has been introduced in the

derived class.

This is the basic story of overriding and overloading that will happen, and certainly like

the data member it must be occurring in your mind that what happens if 2 base classes

have one function which has the same name.

(Refer Slide Time: 18:06)

What happens if 2 base classes have a common name for a member function. So I

illustrate that in this slide, again I have base 1, base 2, the derived class derives from the

same base classes. The difference that is being made is I have f here and I have f here

both in base 1 and base 2 and their signatures are same. I have g here in base 1, I have g

here in base 2 their signatures are different. Then in further moment ignore this part.

Then in the derived class let us say you do not have member function at all just ignore

this part, this you should not consider right now. Now, I try to write c dot f the question

is what is c dot f? Is it base 1 dot f, base 1 colon colon f or it is base 2 colon colon f you

have no way of knowing because it has got two versions of f.

What is c dot g? I have passed a parameter 5 expecting that the compiler would be able

to resolve that it is base 1 colon colon g because, I am sorry there is a small type of here

this should not be int, this should be int. If I call c dot g 5 then it I would expect that base

2 colon colon g will be called, but unfortunately the compiler would not be able to do

that. The reason it will be not able to do that it is a fact that overload is resolved only

between same name spaces. If you have two different name spaces then the compiler has

no track of what the names are going to be. So, g function in base 1 and g function in

base 2 are in into two different name spaces of two different classes so the overload

resolution does not kick in here.

So consequently, c dot g 5 or c dot g without any parameter both of them will actually

turn out to be ambiguous also. In gist all of these four calls will turn out to be ambiguous

and the compiler would not be able to resolve between them. So, if you want to make

them resolve that ambiguity you have a simple way of saying that the basic issue that is

happening is here you have as you inherit from base 1 and base 2 you get two copies of

function f who wants to come into the derived class. Now, we have learnt about the using

declaration for the parent class function, so you can use that. Suppose you say using base

1 colon colon f, if you say I am using base 1 colon colon f then what it will happen is,

this function will be included in derived and this function will not be included, this

function base two’s function will be hidden.

Similar I can do for the g function as well, say I am using base 2 colon colon g which

means this g function will be included, but base ones g function will be hidden. In this

context now if I would like to call c dot f then it will call base 1 colon colon f because I

have been using this. If I do c dot g 5 it will call base 2 colon colon g because I am using

the g function of base 2. Now in this if I also want, there is a situation that in some case I

want to actually also access the f function of base 2 then like I did in case of data

members I can explicitly write c dot base 2 colon colon f 3 in which case it will actually

call f member function of the base two class.

Even though in the derived class I have said I am using base 1 colon colon f. What

actually using does, using basically allows me to do a short cut that I do not need to

qualify the name of the member function with the base class name and I can use it as a

default as I am doing here, but I still always have the option of actually providing the

qualified name for the member function, like I did for the data member and use the other

members in that form.

So, this is what is additionally required over single inheritance which will be very

common because it is quite likely that the base classes that you are inheriting from may

have one or more member functions which are have the same name between themselves.

As we have seen there it does not matter in terms of what actually are their signature

what matters is they have the same name, and if they have the same name then the

derived class cannot use them without any using qualification.

(Refer Slide Time: 23:22)

Coming to the access members of a base, the protected access will allow any derived

class object to access the protected members of the base class of any of the base class

there is nothing to add in terms of multiple inheritance here. So, all that we have learnt in

case of single inheritance will simply apply so we will skip further discussion on this

aspect.

(Refer Slide Time: 23:46)

Let me move onto the Constructor, Destructor. The constructor, destructors of the

derived class will inherit all the constructor destructors of the base classes, but in a

different semantics as we saw in case of the single inheritance because it cannot directly

inherit that because it has a different name, it adds name of the base class and certainly

you cannot override or overload the constructor, destructor in any way. So, if we see with

that then we can see that there are base class has a constructive here.

(Refer Slide Time: 24:22)

The derived class has a constructor and, sorry the second base class has another

constructor and in the derived class has to; here is invoking the constructor of the base

one. So what will happen? Now, it has to construct both the base class objects; the fact

that is invoking base 1 means that the base 1 constructor will be invoked through this and

since it is skipped base 2, the base 2 must have a default constructor which will be

invoked after that. So, if I have just invoked the base 1 constructor and base 2 does not

have a default constructor then I will have a compilation error, because to be able to

construct a derived class object I need construct both base 1 and base 2 kind of objects.

So, if we see the instance this is an object of base one type; this is an object of base two

type this is what we can constructed. Here you can see the object of a derived type being

constructed where the base class 1 has the instance 5 3 which got created through this.

The instance of base class 2 is by default so it has 0 0 as members and this is a data

member of the derived class. This is the basic dynamics of the construction process.

(Refer Slide Time: 25:48)

If you put messages into the base class constructor and destructors and so on and the

derived class constructor destructor, then you will be able to see that the first the base

class 1 is constructed because it is first in the list, then the base class 2 because it is

second in the list, and then the derived class constructed and the destruction happens

exactly in the reverse order.

(Refer Slide Time: 26:20)

This is the basic mechanism of inheritance that goes on in terms of the multiple cases of

base class being there for any particular derived class problem.

