
Programming in C++

Prof. Partha Pratim Das

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture – 05

Arrays and Strings

Welcome to module 3 of Programming in C++. This module we will discuss about arrays

and strings. We have in module 2 seen what are the basic differences between a C

program and a C++ program. We will continue on the same note.

(Refer Slide Time: 00:41)

In this module we will try to particularly understand the use of arrays in C and C++. We

will introduce a basic notion of what is called vector in C++, which is pretty much like

arrays, but lot more powerful and we will try to see how strings are used in C and in

contrast how the string type operates in C++.

(Refer Slide Time: 01:06)

So, these are the points that we will cover.

(Refer Slide Time: 01:11)

To get started we have side by side shown two programs, both of them. They actually are

identical except for the difference in the IO header. So, a basic use of array as in C can be

done in C++ exactly in the same notation and with the same meaning. So, the first

message is arrays can be used in C++ exactly as you know as in C. So, here we are just

assigning some values to the different array elements and printing them, only difference

is in terms the using the printf or using the cout.

(Refer Slide Time: 01:56)

.

Now, the one of the main issues in C, in terms of using arrays that you all must have

faced is when I want to use an array in C, I need to know; I need to specify the size of the

array which means at the maximum number of elements that the array can contain

beforehand, that is at the time of writing the program or to be specific at the time of

compiling the program. So, if I do not know that size, then I need to provide a size which

is greater than what can happen at in any one of the cases that I execute, run in the

program.

Certainly there are two ways of handling this situation. One is I define, declare a large

array and this can be done; this can be either hard coded, the size can be hard coded

within the program or the size can be somewhat soft coded by using a manifest constant

and the other case that you have seen earlier in C programming is you would use malloc

to dynamically allocate space and allocate the array at the run time and then you use it

and if you are using malloc, you will also have to remember to free it up, when you are

use of that array is done.

(Refer Slide Time: 03:21)

So, let us see, how does this look in terms of as we migrate from C to C++. So, this is

just showing the C example on the left hand side. We are hard coding the size of the

array arr to 100 on the right column we are doing the same thing, except that now you

have a manifest constant math, which is defined to have a value 100 and we are using

that math. The advantage of using the manifest constant is there could be 10 different

arrays, whose size is to be specified to 100.

Now, if I hard code all of them and sometime later I need to change all those sizes from

100 to 1000, then at 10 places I will need to go and edit and I might just forget to do all

of them, but if I hash define or use a manifest constant then I can make the change only

at one place, change the definition of max 100 to 1000 and all of those will change. So, it

is a better programming practice in C to use manifest constant and not hard code value,

you already know this.

(Refer Slide Time: 04:35)

Now, you show the similar situation in between C and C++ on the right column now, you

have a C++ program. Certainly, the array size, the maximum array size as max can be

hash define to 100 as has been done, but what we show here is just focus on the line right

after the header of main. We are writing vector within corner bracket int and then the

array name and within parentheses, we show the size max.

Vector is a new introduction in C++. This is not a built-in time; please do not consider

this to be a built-in time. This is something which is provided by the C++ standard

library. So, if you move your attention to the top in terms of the hash include list, you

will find hash, there is hash include vector. So, there is standard library header vector

which has all the necessary declaration definitions for a vector type and you can use that

in this way; what it means is vector for in all respect what likes arrays can be. So, you

just focus within the ‘for’ loop, you see how the array elements are being accessed.

On the left hand side, it is a well known array int arr. We write it as arr i on the right, it is

a vector of int we use the same indexing notation to access the array elements. So, vector

is same in terms of access notation and the result of doing the read or write access with

the traditional array, but it has the advantage that its size is not necessarily fixed at the

compile time.

Now, in this example we have just shown that how to use vector with a fixed initial size

max. So, when we say vector and within corner bracket int, what we mean that within

corner bracket, we are providing the type of the element that the array is composed of,

which is what we write in C as int arr we write it as vector within corner bracket int and

whatever we provide as the maximum size within the square brackets here, we pass it as

a parameter after the arr name.

So, this is just a notational difference, right now just accept this as a different notation of

writing, declaring arrays and once you have done that rest of the program you can forget

about, that you are specifically using a vector you can just continue to use them as

arrays.

(Refer Slide Time: 07:42)

Now with this, let me show where you actually get the advantage. Now, let us focus on

the second mechanism of using arbitrary sized arrays that is you do not know at all as to

how large an array can be you will get to know only when the program is executed by the

user. So, the user will probably provide the size of the array, the number of elements that

the user wants.

So, on the C program, on the left see that the first we are asking the user; how many

elements are there, and the user provides a count value and if you have to do this in C,

then will have to dynamically allocate the array using malloc as is shown and proceed

with that. Certainly you will need to write a very complex font in malloc because you

really need to say how much memory you want, malloc returns you a void star pointer,

you need to remember and cast that to the int star.

All those nuances of C programming exist; now just shift your focus to the right on the

same lines. Now, we are declaring the variable as a vector of int the variable is arr and

please note in contrast to what we had shown earlier, we are not passing any max size.

So, if we do not pass a max size then we get a vector of a default sizes, C++ standard

library will have some default size which is not fixed, but some default size array will be

there, but the following line we write something which you are not familiar in the

notation. We are writing arr dot resize, we call this as resize being a member function of

the vector type. What it does is in this resize function if we pass a value as we are

passing through the variable count, then the vector will resize to the count number of

elements.

So, let us assume that the default size with which the vector was created is 10 and now

the user at the run time as given an input 100 to count, when arr dot resize is done the

value will be passed as 100 and the vector will change to having hundred elements from

the original ten elements.

So, resize can be used very conveniently to increase or decrease the number of elements

that a vector can have or for that matter the vector form of array can have. So, with that

you get rid of using all this malloc and is complicated notation and remembering to free

that location and so on. We can just use vector and resize them as needed which makes

the use of arrays in C++ programs as vector container is far more convenient and

compact than the similar mechanism in C.

(Refer Slide Time: 10:59)

Next, let us take a look in the handling of strings as you are; would be already familiar

that besides 2 numerical types that is whole numbers int and the floating point numbers,

the next most widely used and most required type or values that we need to deal with our

strings where we are talking about a sequence of characters, and what do we have in; if

we are working in C, we have what is now called a C string.

C does not have a default type as string, but it as a string dot h standard library header

which provides a whole lot of string functions like str len, str cpy, str cat and so on and

with that C string is just an array of characters, which we say is terminated by null,

which means that if you scan the array from left to right, you will continue to consider

that you have a string till you come across the first null characters or the characters with

ASCII value 0; please note that in the array after this null there could be several other

characters still remaining, but they are not considered to be part of the string.

Now, with this convention if we use the string functions from string h string dot h header

then you will be able to achieve variety of string operations as you all are familiar with.

In contrast, C++ now introduces a string type in C++ standard library. This is pretty

much like we talked about vector. So, string also is not a built-in type, but it is a type

added through the standard library and you will have to use the string header of C++

standard library to get the strings and it has some amazing behavior like being able to

write concatenations of string as an addition expression.

(Refer Slide Time: 13:06)

So, we will illustrate those. Here is a simple parallel between a C program and a C++

program. This program starts with two strings that are defined within the program the

hello world and we want to concatenate the second string after the first string. So, we just

want to put them side by side the first string followed by the second string and make one

concatenated string.

So, if you have to do that in C, on the left you can see what you will need to do you will

need to have an array large enough to contain the concatenated string let us called it str,

you will have to copy the first string str 1 into str and then you will have to concatenate

str 2 into what is already covered in str. So, it will just come after that, so first hello will

hello followed by a blank will get copied to str and then world will get concatenated str

cpy and str cat does the job and then you can print it.

In contrast, in C++ you have a string type in the string header. So, you include the string

header now you do not declare them as characters arrays you declare them as string

which is the name of the type given in that header; please note that this name is all in

lower case and then you have the string variable, name str 1 and you initialize it constant

string hello blank or world.

The very interesting things is when you have to concatenate it you do not really need to

copy the first string and then do concatenation, you can just say that I am adding str 2 to

str 1. So, we say str 1 plus str 2, so this is pretty much like I have a variable x having

value 3, have a variable y having value 5. I write x plus y to mean 3 plus 5, which is 8.

So that is an integer addition.

This is kind of a string addition in the type of string, this becomes a concatenation

operation and we will see the amazing power in C++ to be able to define operates for

your own types in whatever way you want to interpret them. For example, you could use

this to write algebra for rectangles you can have two rectangles, if you have a rectangle

type and you can define then the addition of two rectangles is basically making a union

of this rectangles to make a rectangle large enough to contain both these rectangles and

so on. So, this features in terms of string is available in C++ therefore, it becomes really

easy to deal with strings.

In C++ particularly note that in C, you will really need to know what is the size of the

result? So, that you can define again an array large enough for the variable str because if

this is str is not enough in size then str cpy, str cat later on will fail in C++ you do not

need to bother about any of this when you do when you declare the variable str as a type

string and you initialize it with the concatenation of str one plus str two the compiler

automatically takes scare of managing the size and will give you a string which is large

enough to contain the concatenation. So, there is a lot of easy in the whole handling of

strings.

(Refer Slide Time: 17:00)

Further, actually does not just end with adding strings or use the addition operates for

concatenation of strings, you can do several other operations.

 In fact, you do not actually need any of the string dot h functions that you have in the C

standard library and achieve their task by using the more natural operates like you can

use an assignment in place of doing string copy, you can use the all the comparison

operates less than equal to less than greater than equal to greater than in place of using

strcmp cmp. We know str cmp is a relatively complex functions to use because it can

take; it takes two strings; two C strings that is card stack pointers and returns you a value

which could either be minus 1 or be 0 or be plus 1 depending on which string is larger or

equal if the strings are equal and so on.

Now, you do not with string type in C++ you do not need to get into any of this. You can

just use the comparison operates and compare strings much in the same way you

compare integers or floating point numbers. So, this is a very strong features of C++ and

particularly for string, this is an extremely convenient way. So, even without getting into

deep understanding of C++ you could just start using string and make all your programs

smarter and easier to write.

(Refer Slide Time: 18:34)

In this module we have shown - how we can work with arrays, how vector really makes

it easier to make arrays variable sized and how strings operations can be done very easily

in C++ using the string type from the standard library.

