
Programming in C++

Prof. Partha Pratim Das

Department Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture - 44

Dynamic Binding (Polymorphism): Part IV

Welcome to module 29 of Programming in C++. Since the last three modules, we have

been discussing about polymorphism, the dynamic binding feature of C++. We have seen

how on a hierarchy of classes, we can have virtual functions and how virtual functions

dynamically bind to the object instance instead of binding to the pointer or reference to

which a particular virtual function is being invoked. We have seen the differences

between the semantics of non virtual functions and virtual functions; you have seen the

behaviour under overloading.

We have also noted that virtual functions could be pure and in which case they do not

need to have a body and in those cases the corresponding class containing such pure

virtual functions are abstract base classes. So, we have more or less covered the whole of

the theory of polymorphism that is involved in C++. In this module and the next we will

try to use the knowledge that we have acquired in terms of the polymorphic feature and

engage that in terms of solving problems and doing sample design. So, in view of this, in

the current module and also the next the target would be to understand design with class

hierarchy.

(Refer slide Time: 01:54)

Specifically in this module, we will first take up and exercise with variety of binding

combinations, when different kind of static and dynamic binding get mixed along with

overloading how does it work. So, we will take one more little bit involved example to

clear out the ideas and then will start off with an example of designing a staff salary

application, which will run into the next module also. In the current module, you will

show in how such an application can be designed in C and we will show the refinements

C++ finally, using the polymorphic hierarchy in the next module.

(Refer slide Time: 02:44)

The outline will be visible on the left of the slide as always. So, let us get started first

with an example. So, in this example we have a simple structure. We have three classes;

A is a base class, B is a specialization of A and C is a specialization of B. So, it is simple

in that way. There are three functions; f, g and h. In class A of which, f and g are defined

to be virtual. So, they are polymorphic and we have a class h which is non virtual. In

class B, we have f and h which mean that we are overriding f and overriding h, but we

are simply inheriting g. So, B does not have a signature of g and while we override h we

do two things, one is we change the parameter type from A star to B star and also make it

a polymorphic function. In C further, we override g and h from whatever C has inherited

and just use inherited version of the function f in B in terms of C. So, this is the basic

structure, we have constructed multiple objects A B C and we have two pointers; one

pointer to A another is pointer to B.

In this context, what we need to answer is, if we have these four invocations that is p A

this pointer invokes function f with the parameter, function g with a parameter, function

h with two different parameters. If we look at these four invocations and if we try to see

on to the different columns where p A, this pointer has been set with a certain objects

address, so here it is set with the address of an A object, here of B object and here of C

object the task is to fill up this matrix, which is already filled up here. So, what I will do I

will just quickly run you through as to why we should see the invocation the bindings in

way that they are. So, to start with, we start with p A being assigned ampersand A which

say that for p A in the static type is a star as we can easily see and also the dynamic type

this is an a type object. So, the dynamic type of p A is also A.

So, since the static type is p A naturally it looks into the class A for the binding and the

dynamic type being A clearly tell us that certainly, in all of this cases all these will

actually invoke the class A functions. The only point to note here that in terms of the h

function which takes A star pointer, whereas in the third case we have actually invoke it

with the A star pointer, but in the last case we have invoked it with the B star pointer. So,

if you look into this then this is p A invoking h with B star.

Now, we already know that B is A, and we already know that up cast is possible. So, this

will also be possible because what will happen is this B star pointer; will get up cast to

the A star pointer and the function will get invoked and that is the reason you have the

same h function being invoked in both these cases. So, does not something very

interesting let us look at the next one, the next is where p A has static type of A and the

dynamic type of B because we have B object. So, naturally again p A being statically of

type A, it will always look at this. So, now when you do p A pointer f, it looks at the

function the class A, and then it finds that the function f is virtual, which means that it

needs to be dynamically bound. It will be bound by the actual object that p A is pointing

to and that object is B type and B overrides this function. So, earlier case it had invoked

A colon colon f, Now, it will invoke B colon colon f which is straight forward.

In the second case again, when we look at p A invoking g, it invokes A colon colon g

because even though g is virtual B does not override g. There is no g in class B. So,

actually because it is virtual, this is actually trying to invoke B colon colon g, but B

colon colon g is same as A colon colon g because b has simply inherited the function g.

So, you have A colon colon g here. In last two cases, you do not have anything further

because function h is in class A is non virtual. So, it is bound by the type of the pointer.

Let us move to the third, where I have an object of type C and I have pointer in to that.

Naturally, if again the first place to look at is class A and we are invoking function f. So,

f is virtual, which means that it will get dispatched to class C, the type of the actually

pointed object. So, if it gets invoked to in dispatch to class C then basically we should be

invoking C colon colon f, but C does not override f. So, C has simply inherited the f from

B that is why you get B colon colon f here. Whereas, when you try to do invoke function

g then again you come here and you have a virtual function so that gets dispatch to

certainly C colon colon g because you have C object. So, you have C colon colon g in

this case C has over written whatever it had inherited. So, it has a separate C colon colon

g function. So, that gets invoked and finally, in terms of the h function again you have

the same behaviour because they are not virtual functions.

So, this how it behaves if these three objects, I invoke methods for these three objects

using their address as if as a and A pointer to the A type of address. So, next what we

look at what happens if we do the same way try to do the same invocation using the B

type of pointer.

(Refer slide Time: 10:07)

So, that is in the next slide. So, we are in this, there is no change on this side, what has

changed is the invoke initialization the pointer B. Now, which we are using to invoke,

earlier we were doing in terms of p A now, we are doing in terms of p B. Now, certainly

the first thing that we see is this is a p B points to A. So, what do we expect? What is the

static type here? The static type is B star, and what is the dynamic type here is A star. So,

if this assignment has to happen, if this assignment has to take place, then some A star

object as to get cast to B star which happens to be a downcast. So, this down cast is not

permitted. So, in all of these cases, actually we will not be able to do to anything at all

because this particular assignment itself will error out, because it is an error in terms of

down cast. So, these cases are over.

Let us move to next one, which is using this and when we point to a B object. So, both

the static and dynamic type is B. So, as we do that as in the previous case if I do p B

pointer f then I start actually here because the type of the pointer is B here if should be

invoked and f is a virtual function as we have seen it is a virtual function and it has a

dynamic and it is pointing to a B object. So, it should invoke the function of the B object.

Similarly, if we invoke g it should again start here and try to invoke in a similar manner

B colon colon g because g is a virtual function again, but B has not overridden g. So, B

has simply inherited the g function from A. So, you see that A colon colon g will be

invoked.

Let us look at the next one where we are trying to invoke this function. Now, when we

try to invoke this function what will happen we are here? So, we start looking in the class

B and in class B do I have a function h which is actually a function which is overridden

from the function in A. Therefore, when I try to do p B pointer h and if I pass ampersand

A then the type of the actual parameter is A star, whereas the type of the formal

parameter, what it expects is B star. So, it means that I need to perform a conversation

from A star to B star, only then I will be able to do that call, but certainly as we know

that this turns out be a down cast, this is a case of a down cast. So, this is not permitted.

So, this particular function invocation will simply not compile.

Coming to the last, when you invoke h in terms of this p B and you try to see it will turn

out to be B colon colon h because you certainly look here, you have B type object. So,

certainly you will have B colon colon h. Finally, when if you have the C object, this is

these cases prevail because you start here and this function f is a virtual therefore, it gets

relegated dispatch to C colon colon f and C as not overridden f. So, it what actually

invokes is the f that C inherits, which is B colon colon f, so that part is easy. Now, if you

invoke function g you again start here now in this what happens you do not see a g but

what is a g that you see here that is actually this g, which is which b has inherited from

the class A and that function is a virtual. So, actually B colon colon g the function g in

class B is same as function g in class A and that actually is a virtual function.

So, this will delegate according to the type of the object that dynamically exist. So, it will

try to listen through this and it will try to invoke C colon colon g that is this function so

you get C colon colon g. The next case is a similar it will actually since this function as

become virtual so you start looking in here. So, you see that h is a virtual function. So,

you delegate dispatch that to the class C because you have C type object. So, you try to

invoke this function and then you find that the actual parameter type is A star and the

formal parameter type is B star. So, the conversation is a down cast. So, it here again you

get and compilation error on this code. Finally, when you try to invoke h certainly you

have p B. So, you start here you find that h is a virtual function. So, you dispatch

according to the type of the dynamic object which brings you to this and you have c

colon colon h.

I have quickly run it through this, maybe it was little fast for some of you. If it is then

please spend some more time try to understand re run the video understand the logic in

every case, but this kind of I have tried to cover all different cases of static and non static

binding along with the what can be overloaded and what can be cast in terms of the

upcast and the down cast. So, with this we will now move on.

 (Refer slide Time: 16:20)

.

With this we will take up a problem which we will try to solve in the remaining of this

module and the next it is a staff salary processing problem. So, let us think of an

organization that needs to develop a salary processing application for a staff. So, what is

the information that we have we have that the organization has only one engineering

division, where engineers and managers work every engineer reports to a manager and a

manager can also work as a engineer. But what is different is the salary processing logic

for the engineer and for the managers are different, possibly managers have some bonus

and all that. So, the same function cannot be used to process the salary for both them.

Further what the organization wants that foresee that in some near future they will also

possibly appoint directors in this division and then some managers will report to different

directors and directors will would, if required would also work as managers and so on

and directors will have their own processing logic for their salary. Further down in

future, the organization wants to say that further down in future which is not in their

view right now, but they are they could also open other divisions like they could open a

sales division and expand their work force in a completely different type. So, what is

required is in this context we need to make a suitable extensible design, design so that we

can as a required add new employee types and new processing logic for the processing of

salary without making significant changes to the existing code or if possible not making

any change at all in the application that finally process the salary, this is the basic target.

(Refer slide Time: 18:09)

So, let us get started. So, I will take the clue from a solution which we will do in C and

let us assume that we just have C at hand and let say how would have solve this problem

assuming the very first version where we have just two types of employees; engineers

and manager. So, there are several questions that you will need to answer before you can

get started with the design and actually code, for example, how do you represent these

concepts of engineers and managers, they will have to be represented somehow. So,

possible since you are in C then the choices is almost trivial that you will use the struct

that is not a problem. How do you initialize these objects with their name, their

designation, their basic PA and so on? Certainly, you will need to have certain

initialization functions that work for every structure type.

Third is a deeper question is finally, see if we have structures then we will have some

structure for engineer and some structure for managers. These are two different kinds of

structure types. So, if we have that then certainly we cannot make an array of engineers

and managers. So, we will need a container because we can just make of an array of

engineers or make an array of managers, but if you do that then the processing will get

fragmented every time we add a new kind of employee. So, we need to have a container

which can have any kind of objects that we can put together.

So, the solution in C is basically using array of union. So, what we can do we can say

that I have a struct which has a fixed field, say type and then within that it has a union

which has multiple different fields, say this is a pointer to engineer, this is a pointer to

manager like this. So, what happens is when you want to keep that, you when you want

keep an engineer record you put a specific type value here, say the type value is er and

then set this pointer which is meant for to point to engineer object make this point to the

particular instance of struct, but when you have to say do with deal with the manager

then you set this type as say some manager value, manager type and set this pointer to

the manager instance. Then depending on any element in this if you first check the type

whether it is er or it is mgr you can decide which of the fields in the union to use and use

it appropriately. So, this is a nice design rapper which is c uses extensively to keep a

container of objects which are of mixed types. So, we will have to use that.

Now, the certainly the question of how do we have different salary processing, this is

more like the initialization. So, which we will need to have for every structure type, we

will need to have some structure of a specific function a function for engineer a function

for manager and so on. Then finally, comes the question that if we have an array of a

union. So, we have different records, this record could mean for an engineer, this record

could be for manager, this could be for an engineer, this could be again for an engineer

and so on, this could be for manager and so on.

How do I given any object, how do I decide what is a correct algorithm for the correct

employee type. So, there is some kind of a switching which is involved that is I have to

know because the correct employee the correct algorithm is encoded in tempt of the

structure specific function. So, I have and in the array of union I have the employee type.

So, I have to combine them in some way and create a switch and C provides typically

two different options that I can have a function switch that is if else if else kind of

structure or I can use a set of function pointers.

(Refer slide Time: 22:25)

So, let us start and look at that we will initially use a function switch. So, just to quickly

run through that I need to define the types of employees that I have, er for engineer; mgr.

So, I defining a enumerate type these are structure which defines and engineer type I had

just shown name any other attributes can be put in there. We have structures for manager

where we have name and I have also optionally put that since engineers will report to

managers. I will need to keep a list of engineers who report to the manager we need to

initialize.

So, there is an initialization function which certainly takes the name and then allocates

the space for that particular structure object through malloc, sets the name by copying

and returns that. So, if I invoke the init engineer function with a name then it will return

me the pointer to an engineer which I can then put in the store. Similarly, for the manager

I have init function like this. We have separate processing function for engineer, which

takes an engineer pointer and manager which takes a manager pointer and finally, these

are collection store as I said.

So, I have a structure where one field is a type which will be one of these because it is e

type and I have a union of two pointers. So, at any point of time any one of them will

actually carry a meaningful value the other one will because they will be overlap because

it is a union both of them do not exist at the same time. So, finally, I call this type as

staff. So, that turns out to be my final collection of employees.

(Refer slide Time: 24:13)

So, given this now I can certainly try to write the application. So, staff is my collection.

So, I create an array of this union type. So, 10 staff can be kept in this all staff record

then the next, this is just for making the whole program work. It just showed that how we

would create the different engineer and manager and put them in the collection. So, if we

just think about one in the first one then what we are trying to do we have this. So, this is

all staff the 0th location, this as a type field.

So, there I put the engineer type because I want an engineer and then I invoke init

engineer and as you saw that if I invoke it with the name of the engineer then you returns

me pointer to the engineer. So, in the union I am basically looking at a engineer pointer

which will get set. In this way, the manager pointer and the other engineer pointers also

get set having done this then this is where I actually do the actual processing since what I

will have to do; I will go over this whole collection. So, I have to go over this whole

collection. Here, I have just hard coded the number 6 ignore that this could have been

tracked also by counting. I just hard coded that there are 6 or possibly that it should have

been 5. There are 5 such and so what I do is I have to go over.

So, I have an array of all this union records. So, I go to the 0th one, first I look at the type

int. So, because I have to know which kind of, whether I have an engineer or a manager.

So, you pick up the type here from all staff I the type and then depending on the type if

the type is er, I invoke the processing salary engineering function with the corresponding

pointer which is the pe pointer, if not otherwise I check if it is a manager type then I

invoke the process salary manager function with the corresponding manager pointer and

if it is even not even that then there must be some error. So, I just error print a error

message.

If I do that then we have these 5 employees, 1 engineer and 3 engineer and 2 managers

will get this particular output in terms of processing. So, this output is equivalent to as if

the salary has been processed. So, this is how this could be written. So, naturally you can

see there are some 9 points, one is a union container itself, one is a way you have to

initialize and create this object and one certainly is this. So, if we if we just go forward

and try to now take the first step in the future that you want add the director type here or

design remain same. So, all that all this design details remain same, but only thing we are

adding only thing we are adding a director type now. So, we want to add that.

(Refer slide Time: 27:17).

So, if we do that then all that it means that I have to add a structure type for the director.

The initializer for director, the processing routine for the director in this there will have

to be a code for the director. They will have to be another field which points to the

director type. So, that would basically be all in terms of the representation.

(Refer slide Time: 27:40)

Then, if we actually look at the code then all this were there, then I can also create a

director and put that, but here if you look at then in the processing routing, if you look at

then you will need to have another condition which will check if somebody is a director

and then call the corresponding process salary director function with the pointer of the

direct. So, if you just see, we are getting into some bit of uncomfortable situation here

because more and more types the basic design specification it has to be flexible, but

more and more we add different types, we on one side here, this switch will keep on

expanding.

So, the application code if I add a type then the application code has to know this is the

application code main routine right. So, the application code as is to know that a new

type as been added and it as to add some code there it as to add some more switch there.

So, that is one a knowing factor we having to maintain the type information through an

enumerated value separately, which is another disturbing factor and if you just look at if

you just look at the earlier one, we are creating lot of duplications, for example, here we

have to do a union based collection which is also quite combustion because it is not

guarantee that the value that I keep in the type and the particular field that I read in the

union is no way checked by compiler.

So, it we can always make mistakes in that and we see lot of issues because see this

name see if you look into this typedef this part in the director. This part all of these are

basically code you know repeated things and if you look into these codes all these codes

the copy of name and all that they are very similar in structure, but still we are just

having to copy and you know paste and edit into that and creating lot of possible issues

in terms of the code maintenance and expansion. So, by using C we are able to get to a

solution we can survive, but we need to have better solutions for this problem, which is

what we will discuss in the next module.

(Refer slide Time: 30:02)

So, here to summarise we have practiced a binding exercise and we have started

designing for a staff salary application, where we have just worked out C solution and

observed what are the difficulties lacunae in that solution.

