
 

 

Programming in C++ 

Prof. Partha Pratim Das 

Department of Computer Science and Engineering 

Indian Institute of Technology, Kharagpur 

 

Lecture - 43 

Dynamic Binding (Polymorphism): Part III 

 

Welcome to Module 28 of Programming in C++. We have been discussing about Static 

and Dynamic Binding. In this context in module 26, we discussed about casting 

particularly on a hierarchy up cast and down cast issues. And then in the last module, we 

have formally introduced a Notion of Binding. While I will invoking a function use in a 

pointer or a reference, how does the compiler resolve the actual function that will be 

invoked, whether it does it based on static strategy which will be done for non-virtual 

functions or it invokes involves a dynamic strategy for virtual functions. And we have 

seen what are the basic rules of static and dynamic binding that is engaged in C++. 

And we have seen that whenever a particular class has a virtual function whether that 

function is inherited or that function is introduced in that class it becomes a polymorphic 

type. And based on that, we will be typically discussing about polymorphic hierarchies 

and thoroughly try to illustrate to you as to how they become very useful modelling and 

programming tool in terms of the object oriented paradigm. 



 

 

(Refer Slide Time: 01:41) 

 

In this particular module, we will continue on that polymorphic type. And we specifically 

try to understand why destructors must be virtual in a polymorphic hierarchy. And we 

will also try to start learning as to how to work with the polymorphic hierarchy. 

(Refer Slide Time: 02:03) 

 



 

 

So, in a specific we have three topics to discuss which form our outline and we will be 

visible on the left hand side. 

(Refer Slide Time: 02:12) 

 

So, first is a Virtual Destructor. So, let us start with an example. So, this is the example. 

There is a class B, the base class, which has some int type of data. There is a class D 

which specializes from B and it is a pointer to integer type of data. Look at the 

constructor, the constructor simply takes a value and assigns sets to the member. The 

destructor does nothing it. We have put messages in the construct and destructor, so that 

we can trace and understand what is going on. Similarly, if I have a the derived class 

constructor, it takes two numbers; first it uses to construct the base part, calls a base part 

constructor; and the second, it uses to initialize its own pointer data, it dynamically 

allocates an integer with the value of D 2 and sets a pointer to the ptr member. It also has 

a message to say that it has happened. 

Coming to the destructor of the derived class, we have a message saying that the 

destructor is being used. And certainly since now the object is about to be destroyed; it 

had a dynamic allocation in the ptr pointer, so that allocation will have to be released. So, 

we do a delete here. In addition to be able to see what is insight the classes, we use a use 

print functions and we make the print function virtual, so that it can be invoked from the 



 

 

pointer and depending on the object type, it will do an appropriate print of either the data 

or the data and the pointer. Since, data is private here the overridden print function in D 

we cannot actually access data. So, this function I cannot write C out; even though data 

is a member of the D class, I cannot write this because data is private here, and therefore 

it cannot be accessed. 

So, what we do is we follow a simple trick. We in turn invoke the corresponding member 

function in the B class. So, I directly invoke B colon-colon print, which means that it will 

invoke this member function print of the B class with the this pointer of the derived class 

D. And since this invocation actually needs this pointer of type B, what will happen is we 

are going up the hierarchy, so an up cast will automatically happen. So, that is what is the 

meaning of this. So, this is about the code that you get to see you can go through further 

literature. 

(Refer Slide Time: 05:02) 

 

And now then in the application we create a B class object, we create a D class object put 

them to two pointers, and we print. And certainly if we do that from the creation, this is 

the construction of the B class object that is pointed to by p. These two come from the 

construction of the D class object because first B part of the D class object is constructed 

then D part is, then you do print you see 2, 3, 5 as you see this member, so up to this 



 

 

point there is nothing interesting. So, forget about this was all setting up. And then we 

have the delete for these pointers. We want to basically delete the object. So, if I delete 

this what will happen this should invoke my B class destructor which it does, so that that 

is pretty fine. Finally, I invoke the destructor of invoke delete on q which should invoke 

the destructor of D and see what I get. I do not get the destructor of D, I do not get this 

printed fine. So, why is it that? 

Now if we apply our mind and think about what is going on in terms of the binding see 

this destructor, destructors are in a way are member functions which are defined here as 

non-virtual. So, what will happen when I want to call delete on q then it has to decide 

based on what is the type of q, is that is what the compiler we has to see. So, compiler 

wants to decide based on q and q is of type B. So, it has to go to class B and decide that 

what destructor should be called it knows there is a destructor and it finds that this 

destructor is non-virtual. So, it calls it done. The destructor of D will never get called, 

because actually what we needed to be able to destroy this object, we needed the call to 

land in the destructor of D which in turn would call the destructor of B and do things 

right that is how it happens. So, here the call landed at a wrong place. So, this is the basic 

problem of a destruction way for which we need to make the destructor virtual. 

(Refer Slide Time: 07:40) 

 



 

 

So, it is the fix is very simple. All that you do is write the word virtual between in front 

of the destructor of p; up to this point there is nothing different, there is nothing different 

in the expected behavior and the output. Now what happens in if you to delete q, q is of 

type B, so it goes to class B, the compiler sets it to class B. In class B, you find that the 

destructor is virtual which means now the dispatch has to happen not based on the type 

of the pointer, but the type of the object it is pointing to. And what is the type of the 

object, what is a dynamic type the dynamic type is D. So, when we do this, actually this 

gets involved this does not this invokes the destructor of D, which in turn will invoke the 

destructor of B. So, you see that the destructor of D is invoked this, this gets deleted and 

then at this point the destructor of B is invoked. So, you get to see the B has got invoked. 

By the rule of polymorphism hierarchy that we have seen earlier, since the destructor of 

B is virtual by inheritance the destructor of D is also virtual. I do not need to write that it 

is virtual. 

(Refer Slide Time: 08:58) 

 

But without that the major problem that I was getting into that if this virtual were not 

there then this was not getting called; and the consequence of that, the pointer that was 

created in the D object was not being released. So, I can say that when I have an object 

from a derived class, which has a base class part. And I am holding that from a base class 

pointer, if the destructor is not virtual then it is simply looking at the base class part of 



 

 

the pointer. So, it only deletes this part of the object. It does not delete the remaining part 

of the object. So, we say that the destructor tries to slice the object; it tries to chop off 

that object at this point, and only does releases one part. So, this is something very, very 

dangerous because we will have certain you know chopped off sliced object remaining in 

the system, and the system consistencies will go here where. So, if you are on hierarchy 

then make sure that the destructor in the base class will would be a virtual function. 

And now you can understand the moment you make the destructor of the base class 

virtual, because otherwise this whole mechanism will not work, the whole cleanup 

consistency will not work. But as soon as you make the destructor of the base class 

virtual, that means, that the base class become polymorphic irrespective of whether you 

have another polymorphic function like this or not; like here, we had another 

polymorphic function. But even if we did not have that, even if we did not have this print 

function, the moment I make this virtual class B becomes a polymorphic type, and 

therefore, since it is the root the all classes that are derived from that directly or 

indirectly all become polymorphic. So, the whole hierarchy becomes polymorphic. So, 

this is one of the reasons that I had mentioned earlier that if I have a hierarchy then it 

does not make sense to make it non-polymorphic, it is of not much of interest. 

(Refer Slide Time: 11:05) 

 



 

 

So, what we learn is if the destructor is not virtual in a polymorphic hierarchy it leads to 

slicing. So, destructor must be declared virtual in the base class always. 

(Refer Slide Time: 11:16) 

 

Let us look into some other interesting problem. Let us consider a hierarchy of shapes 

and our basic objective is we are trying to build a graphic system where these shapes can 

be there on the canvas. So, it is as if there is a canvas, and on that canvas, I want to draw 

objects of this shape different kinds of objects of this shape and so on, so that is a in deep 

objective. And there could be several other graphic things that we should be doing, but 

based on that we create a hierarchy. So, there is a shape, there are two kinds of shape that 

is basically polygonal shapes and closed curves like closed conics, there could be others 

also. In polygon, we have triangle, quadrilateral; there could be many more in closed 

conics, we have ellipse, circle and so on. So, this is just a simple. 



 

 

(Refer Slide Time: 12:12) 

 

And what we want to do is we want to have a polymorphic draw function here, because 

the way you draw a triangle say here drawing a triangle is basically drawing three 

segments of line. But drawing a circle is a petty involved operation it use you some 

equation some algorithm drawing an ellipse is even more complicated, but in contrast 

drawing a quadrilateral would be. So, we want to have a hierarchy, where we have a 

draw function everywhere, so that we can we can simply we may not really need to 

bother about which particular object we have we will just hold a pointed to that object 

and call draw. And with that, we should be able to land by the use of dynamic binding or 

you should be able to land with the right draw function of the corresponding class, so 

that is what we want to do. 

So, you want to have a polymorphic draw function for the hierarchy the draw will be 

overridden in every class based on the drawing algorithm. Now we get stuck because if I 

have to have this then certainly I need the draw function in the route, I need a draw 

function in the shape class. So, but the question is if I just a shape can you draw it, it is 

not possible to draw in arbitrary shape. In fact, which is words is for an arbitrary shape 

we cannot even represent it. So, we lead need some mathematical curves, some 

definitions to be able to represent shape, so that is the genesis of the problem that we are 

trying to address. 



 

 

(Refer Slide Time: 13:39) 

 

So, for polymorphic hierarchy of shapes we need a draw to be a virtual function, draw 

must be a member of shapes class, so that the polymorphic dispatch can work. So that I 

can have a pointed to the shape class type which can hold actual object instances of any 

of the different types of object that exist on the hierarchy of a triangle, of a rectangle, of 

anything. And we should be able to just from the pointed to shape, we should able to just 

invoke draw and it should end up polymorphically dispatch to the particular draw 

function of the particular class of which the object I am pointing too. But certainly we 

cannot write the body of the draw function in the shape class, because we do not know 

the algorithm. So, for that a new notion is introduced which is call the pure virtual 

function. And a pure virtual function is characterized by it has a signature, but no body. 

We will see some exceptions to that, but the basic notion is it has the signature, so that I 

can call it, but it does not have a body because I cannot implement it; sounds weird, but 

le t us see how does that fit in. 



 

 

(Refer Slide Time: 14:49) 

 

Now, if I have a pure virtual function in a class, at least one, then I call that to be an 

abstract base class. Now this virtual function - pure virtual function may be inherited or 

might may be defined in the class, it does not matter which I get. But if a class has a pure 

virtual function, it is a abstract base class, what does that mean, what is abstract about 

this. So, the third point says it all. No instance can be created for a abstract base class; an 

abstract base has everything, but it cannot create an abject instance. Why it cannot create 

an object instance. Conceptually, it is very clear because if I have a pure virtual function 

of which I just know the signature, I do not know the body, I do not know the algorithm, 

if I could create an object of the abstract base class then using that object I could invoke 

the pure virtual function which is a member of that abstract base class, but I do not have 

an algorithm for that so what do I execute. So, the way we restrict we say that the no 

instance can be created. Since, no instance can be created an abstract base class does not 

have a constructor or a destructor. 

But it can have other virtual functions, it can have more pure virtual functions, it can 

have non-pure other virtual function, it may have non-virtual functions, it may have a 

data members and so on and so forth. Naturally, if it has data members then we would 

expect the data members to be protected, but it is possible that you have them as private 

and public I am saying it should be preferably protected because you do not expect an 



 

 

instance of this class. So, if you do not expect an instance of this class, you do not expect 

that the class itself is doing some computation using the data members. So, the data 

members are there, so that the derive classes can use them. So, it is reasonable that they 

should be protected. Of course, you can meet them public, but that violates the basic 

encapsulation rule. 

Similarly, the member functions of the class should normally be public, because certainly 

we will not have an instance, so if you do not have an instance then certainly it is a 

derive classes the hierarchy that we are going to use these functions. But, it is possible 

that you can have private or protected methods as well; and do different kind of tricks to 

hide the encapsulation. And since, we are talking about an abstract base class in contrast 

there are concrete class that must override an implement all pure virtual functions. 

Because now if you derive from, if you specialize from an abstract base class, naturally 

in the derived class, you do not have a default you will inherit the function, you will 

inherit the pure virtual function. But again in the derive class, you do not have an option 

of invoking that function, because that function by itself does not have a body. So, you 

will have to be able to create objects finally, you must have some derived classes which 

override the pure virtual function as non-pure virtual function, and implements them that 

is provides the body, such classes will be known as concrete classes. So, certainly for 

concrete classes, the instances can be created. This was a lot of set of rules. 



 

 

(Refer Slide Time: 18:17) 

 

So, lets us go into an example and try to understand. So, I have shown the hierarchy of 

shapes. At this point, you have feeling little lost in terms of the hierarchy, it will good to 

take a print out of that slide and keep it by the side, so that you can quickly refer to it. I 

did not have enough space to show it together, but it is conceptually very clear at the 

route class, base class in shapes. So, it has one virtual function draw, which does not take 

anything, does not return anything, but it is a virtual function. And we use this special 

notation of saying the assignments symbol then zero, which says that it is a pure virtual 

function. So, if you do not have this, then it is just a virtual function, but when you put 

this, this is called a pure virtual function which means that it is not expected now that 

there you will need an implementation for this function for the whole code to run. And 

since I have a pure virtual function, this shape becomes an abstract base class that is the 

basic. 

Now, let us go down the shape had two specializations; one is polygon, and one is closed 

conics. Now in polygon, as I inherit we override the draw function, and polygon now has 

an implementation. Of course, this in a print message is just indicative of the 

implementation. So, possibly you implement an algorithm that the polygon is 

triangulated, and every triangle is drawn possible that way whatever. But, the point is we 

have now inherited and implemented the pure virtual function. So, this becomes an 



 

 

ordinary virtual function now. And therefore, the class becomes a concrete class that is it 

will be possible to create instances of the polygon class. Look at the other class 

specialize from shapes, which is closed conics. In this, if it a closed conics, if you just 

say it a closed conic, then it could be a circle, it could be eclipse. So, I do not really 

know how to draw them through a generic algorithm. So, the closed conic also does not 

have a draw function. So, what it does, it does not override, it does not just have any 

signature of the draw function. So, what will happen, since this is a specialization of 

shapes from the shapes, it inherits the draw function, which is purely virtual in shapes, 

therefore, it is purely virtual in closed conics also, because no implementation has been 

provided. So, closed conic also continue to be the abstract base class. 

Then you have triangle specializing from polygon, quadrilateral specializing from 

polygon, as they specialize they have their own implementation. So, they are inheriting 

and overriding the function, so these are the specific draw functions for triangle 

quadrilateral base of classes. And then in terms of the other side, in terms of the closed 

conics, circle specializes from closed conics, ellipse specialize from closed conics, and 

they override the draw function with the circle specific drawing algorithm or ellipses 

specific drawing algorithm and so on. So, they become concrete class. So, now, as it 

turns out that the route is an abstract base class, the closed conics are the abstract base 

class, because both of them have one pure virtual function draw. All other five classes 

have become concrete, because each one of them have introduced an implementation 

have promise an implementation of the inherited draw function, which it has overridden. 



 

 

(Refer Slide Time: 22:15) 

 

So, with this now, if we look at the way we could create the canvas. So, the canvas say is 

now an array of a pointer to shape, so these are pointer to shape. And I have different 

kinds of shape, I have a triangle, I have a quadrilateral, I have a circle, I have an ellipse. 

So, I create all of these of course, in actual code, there will be lot of parameters and all 

that, but I am just demonstrating the whole process. So, I create pointers to variety of 

different objects; each one of them is eventually a specialization of shape. So, when I 

create a dynamically create a triangle, I get a pointer of a triangle type. And since 

triangle is a polygon, and a polygon is a shape, so I can up cast this pointer to the shapes 

pointer I can do that for each one of these pointers and they are all shape. 



 

 

(Refer Slide Time: 23:14) 

 

 So, now, I have uniform array of pointers of shape through which I can actually invoke 

methods of all of these functions. Then I simply to draw I simply write a for loop, but I 

start from the zero, this code must be familiar with you this basically tries to find out 

how many elements are there in the array of shapes and you go over them. So, if we have 

the ieth element arri this of type shape pointer. So, on that I invoke draw function. So, 

when i will be 0, at it will actually have the value of new triangle. So, this will this call 

will take me the compiler will map it here first, because arr is of shape pointer type and 

then it finds that this is virtual, so that is to be dynamic dispatch. So, the dispatch will 

happen based on the actual object it is pointing to. For 0, this will be triangle. So, this 

particular function will get called. Then when becomes, so this for 0, for 1, this is a 

quadrilateral. So, the same dispatch will happen and this function will get called and so 

on. 



 

 

(Refer Slide Time: 24:23) 

 

So, if we try to quickly look at the output then for this code, the output will look like this. 

So, first was the new triangle, so in the output you see. The triangle draw has been called 

then the quadrilateral draw has been called, then the circle draw has been called, the 

ellipse draw has been called and so on. And all that we could do we needed to do is just 

call the function at the route, the polymorphic function at the route. And because of the 

ability to introduce pure virtual function and abstract base classes, we have been able to 

do this whole module together; otherwise, without that there is no way to generalize 

between the polygons and the closed conics into a same hierarchy we would have 

required actually closed conics itself is cannot be generalize in that way. 

So, this is the basic advantage, the basic way you start using the polymorphic hierarchy 

to be able to write codes which are extremely compact in nature and we will see lot of 

other benefits like extensibility and so on. And but certainly for this case the instances of 

the shape and the closed conic classes cannot be created because they are abstract base 

class. 



 

 

(Refer Slide Time: 25:35) 

 

Now, one more point that you should note is if I define a function - virtual function to be 

pure, then the class becomes abstract by definition. And you cannot create an instance, 

but the fact that a function is purely virtual says that an implementation for that function 

is not necessary, but it does not say that I cannot have an implementation. A function 

would be purely virtual, and in addition, I could have an implementation for that. Now if 

I provide the implementation, also its purity does not go away, because I am saying that 

it is it is a pure function. So, it will continue to remain pure, which means that no the 

class will continue to be abstract and no instance of that class can be created, but the 

function has an implementation which can be used. Now why would I need that, 

certainly the reason I will need that is for a code reuse for code factoring because a 

certainly the pure virtual function are at the route. 



 

 

(Refer Slide Time: 26:50) 

 

So, think about this; suppose in the first case, I needed to do a draw for a triangle. Now if 

I need to do a draw triangle, then certainly if you think about the drop, now there is there 

is one part is a triangle algorithm which comes here. But to be able to draw a triangle, I 

need to pick up a brush, I need to decide the color, I need to decide you know the 

thickness of the brush, I need to know the position, and all those. Now that part of the 

algorithm does it change between whether I am drawing a triangle or I am drawing a 

quadrilateral, drawing a quadrilateral also I need to pick a brush, I need to pick a color, I 

need to pick a thickness. In drawing a circle also, I will need to do that; in drawing an 

ellipse also, I need to do that. So, all of these will be a common part of code which goes 

into all of this different draw functions. What would be best is I take that common part of 

the code out and put it in the route. 

So, what I simply need to do is when I am implementing draw function for the triangle, I 

simply invoke the draw function of shape. We have already seen this in earlier example, 

in the print example we saw this that you can always call the inheritable function form 

your parent directly by using the class of a parent. I could have made it propagate 

through polygon also that is I could have done it that this actually is a polygon colon-

colon draw. So that it calls this and then that calls shape it could have been like that, but 

for the draw I did not find any reasonable logic as to what can triangle and quadrilateral 



 

 

share in common form the draw of the polygon function, which actually has to draw. But 

certainly it has a lot that it can share from the draw of the shape function which can do 

all the required brush initialization and stuff like that before drawing a particular 

geometric object. 

So, it is possible that pure virtual functions may have a body, and that does not take away 

the virtuality of it. So, pure virtual functions, I would am particularly emphasizing 

because I have seen quite a few textbooks, do not clarify this point. They just say that the 

pure virtual functions do not have a body, but I am just clarifying that it is not the pure 

virtual functions do not have a body; pure virtual functions may not have a body. They 

can if they want, but the purity lies in terms of whether you define it has a pure and that 

will lead the corresponding class to be an abstract base class. 

(Refer Slide Time: 29:29) 

 

So, if I do this then naturally my earlier output will change. And now for the same code, I 

have I am basically when I am here with index 0 - the arr0 pointed draw is actually 

calling for this function, which is calling the draw function of triangle which in turn is 

calling the draw function of shape. So, these two, first the draw function of shape 

executes and then that of because it has been called that way, it is not by structure. 

Similarly, for quadrilateral, similarly for circle, for ellipse, so every time you first call 



 

 

this. So, this is one of the though it is not the only way to use the implementation of a 

polymorphic function of a pure virtual function, but this is one of the ways where you 

might use the implementation for a pure virtual function as well. But of course, that does 

not change the abstract notion of the classes, and shape and class closed conics continue 

to be abstract, and no instances can be created for them. 

(Refer Slide Time: 30:35) 

 

So, to conclude, we have discussed about why destructors must be virtual. And to be able 

to work on the polymorphic hierarchy, we have introduced pure virtual functions and 

introduced the notion of abstract of base class. In the next module, we will take up more 

examples to show how these tools can be used to actually do certain design and code 

processing on the class hierarchy. 


