

Programming in C++

Prof. Partha Pratim Das

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture - 42

Dynamic Binding (Polymorphism): Part 2

Welcome to Module 27 of Programming in C++. We have been discussing about static

and dynamic binding. In fact, we talked at length in the last module about various casting

options, particularly when casting is done on a class hierarchy; and we observed that if

we up cast from a specialized class to a generalized class then that are valid operation.

Because by interpreting specialized class object as a generalized class object we are only

using part of the information that is available. But downcast when you try to cast a

generalized class object as a specialized class object, we are trying to interpret

information that does not exist for the specialized class, so that will be an error. And we

had discussed about this casting issue, because particularly when we discuss dynamic

binding over class hierarchies then regularly we need to perform a different kinds of up

cast.

(Refer Slide Time: 01:37)

So, we have taken a look at an example. What we will do in this module we will continue

to discuss about or detailed understanding of static and dynamic binding; and with that,

we will introduce what is known as a polymorphic type in C++.

(Refer Slide Time: 01:52)

This will be the outline of the module, and will be visible on the left hand side of your

screen always.

(Refer Slide Time: 02:02)

Let us understand what we mean by the static and dynamic type of objects. We have so

far understood that in object if I have a class A and I define an object of instantiate an

object of class a, then the type of this the type of a is the class A. We have understood

that and that is what is uniform all through. Things start becoming different when we

have a pointer variable or a reference variable, which is of a certain type, certain class

which is a part of a hierarchy. So here we are showing such an instance, we have a class

A, and we have another class B, the hierarchy diagram is like this, which is a

specialization of A, B is A.

And in this context, when we have a pointer of type A, so it means that it is this pointer p

can store an address where I expect to get an A type of object which is fine. So if I just

do say if I say that I have A star p, and I have created a new object A, and kept the

address in p so that will be in the memory somewhere this object A has been created

dynamically, instance of A has been created dynamically instance of A has been created.

B is the pointer, which is pointing to this. In this case, the type of p as we know as a

compiler we will get to see is that of a pointer to A. And the object that it is actually

pointing to is also of type A, which is the normal scenario.

(Refer Slide Time: 04:18)

But, let us think that instead of creating A object, I have created a B object. So I have

created here, dynamically I have created a B object which means that it has a base part

which is of A type, and this is my whole dynamically created object. And I have a pointer

p, which is of type A, so the pointer p points to this. This we have seen this is a scenario

of up cast that we have seen is quite possible; and therefore, actually if we look at the

object through p then we will be able to see only the base class part of it we have

understood why this is so. Now, in this context, we can see that the actual object that is

created has a type which is of B; this has a type which is of B. And the pointer has a type

which is of A.

So we will distinguish these two now. We will say that the type of p statically the type of

p is A, why are we say statically, because this is what the compiler has got to see. The

compiler has got to see that p has been defined as of A type pointer. But what has

happened in the run time, what has happened in the actual execution; in the actual

execution act, really a B type object has been created, and it is pointer put to p. So, the

dynamic type of what p points to is actually, it is pointing to a B type object though it is

actually A type pointer. So this is the notion of the dynamic type.

As I mentioned that if I had just done A star p and we had done a instantiated A object

there then the static and dynamic type both are A, and they will be same, but it is

possible that the static and dynamic type are different. So, it is very important to keep

track of what is the static type that is what the compiler c and what is a dynamic type

which happens at the run time with the compiler cannot see. Now, certainly you would

be curious to know as to why we are creating these two static and dynamic type

concepts, and how they will be used, so that will unfold after maybe another module also

when we actually show applications of how the dynamic type is really very critical to do

object oriented programming.

(Refer Slide Time: 07:01)

So, with this type of object, we can define static and dynamic binding. So, formally, I

just shown an example, but now I am giving you the formal definition. We say that when

a function invocation binds to the function definition that is done based on the static type

we say that a static binding has happened. So, what we are saying we are saying I have a

function say void f and I am calling f, so while I am calling f, I am binding to this f.

Let say different scenario, I have void f int, I have void f that is I have overloads of this

and then I am calling f 3 or I am calling f, if I call f 3, I bind to this; if I call f, I bind to

this. So, binding is the process by which from an invocation, I can say what is the actual

function that will be invoked from this invocation that is the process of binding that is

what is known as binding.

And if I can resolve that at the compile time if I can decide on that at the compile time

then I say that I have static binding, and alternately this is also called early binding,

because early in the sense that the compilation certainly has to precede the execution of a

program. So here at the compilation time at the program writing time itself I know what

the binding will be, and therefore, this is also called early binding. So normal function

calls as I was showing; overloaded function calls, overloaded operators and so on. The

various different kinds of function invocations that we have seen are typically examples

of static binding.

In contrast, the dynamic binding talks about when a function invocation binds to the

function definition based on the dynamic type of the object that is if we have class B as a

specialization of A, and let say both of them have a function f, and I am invoking a

function based on a pointer. I need to decide whether it should bind here and whether it

or it should bind here. If this decision depends on the dynamic type of p that is not the

type of p itself, p could simply be a type of A - the base type, a pointer to the base type.

But if the binding depends not only on the type of p, but on the actual object that the p is

pointing to. If it is pointing to A type object, then it should bind to the f member of class

A, but if p is pointing to a B type object then it should bind to the f member of the b

object, this is what is known as dynamic binding. Certainly whether p points to an A type

object or it points to a B type object, p pointer f this expression does not change.

So, the compiler has got to see only p pointer f. So compiler, at the compilation time at

the static time could not have decided as to whether a colon-colon f will be invoked or b

colon-colon f will be invoked this will be decided later at the time of execution that is

why this is called late binding. So this is dynamic binding, because it depends on the

dynamics or the execution run time of the program. It is late binding because it is

happening later than the compilation time. This is as it is the run time.

So, though it was not very formally discussed and organized, C also has this kind of a

concept in terms of function pointers. So if I say that I have a typedef and I say void star

p f, then p f becomes f type of a function pointer. So I can say p f then myf then myf is a

function pointer which can point to any of the functions which takes a void and returns a

void. So, in this context, if I write void g, if I write void h, then if I then invoke myf as a

function then this expression may invoke g or may it may invoke h, depending on if I

have assigned g to my f then this will invoke g. If I have assigned h to myf then this will

invoke h. So this is the basic concept of the function pointer that you know.

And so this also is a situation of dynamic binding, because compiler from knowing this

expression cannot know whether myf actually has been set to point to the g function or to

point to the h function. So, function pointers also are the fundamental which offer the

dynamic binding in c itself and certainly in C++. And then we will see that the virtual

functions are the right example of late binding, dynamic binding that we have in C++.

(Refer Slide Time: 13:05)

So let us go over into different cases. So, first little bit more on the static binding. I have

a class B, as a base - class d is the derived specialized class. So, if I have a member f

here and a member g here, and then I construct two objects. If I do B dot f certainly it

will call this function because it knows statically. If I call d dot f, it will also call this

function, this will also call this function, why because d has inherited, and we know that

being a specialization it will inherit, so d has inherited f so it will call B colon-colon f

because it has been able to inherit that; though it is not explicitly written in the scope of

d. And certainly if I call the new function g, d dot g then it will call the d dot g, which is

so this is the basic notion of inherited functions that we had seen.

Now, if I overwrite, I am doing the same thing, but instead of introducing a new function

I have introduced the signature of the same function in B. If I have done that then this

will kind of, now if I do b dot f certainly, but now if I do d dot f, it will invoke the new d

colon-colon f or the overwritten function. So, moment I overwrite I am actually masking

the base class function that is for d, the base class function b colon-colon f is no more

available so that is a basic structure of the overriding operations. So, we will have to be

careful in dealing with that. We cannot use both the base class as well as the derived

class functions.

(Refer Slide Time: 14:58)

Now in this context, I would point you to an example that we had taken here earlier

which had shown the same thing. And you have a base class is the function f, which is

overwritten here, and is also overloaded here. So, the derived class has two functions f

and f which takes an integer and f which takes a string, so when we make the derived

class object and we invoke f with 3, it invokes the f int function, if we invoke with red

then it invokes the overloaded f function. So, you can override and overload at the same

time, so this is what we have seen. So, I am just reminding of this because all this will

now get mixed.

(Refer Slide Time: 15:53)

Now, suppose you have a situation, where you have a function in the base class, member

function in the base class which you over one two overload in the derived class. You

have a function in the base class which you want to overload in the derived class. So you

have written the overload.

Now the question is as you overload, you will also hide the inherited function that you

have inherited from the base class. So, if you just do this, and in then if you try to write b

dot f, you will get an error, why will you get an error because now the compiler knows

that you have just overloaded you have inherited, and overloaded that so the compiler

knows that now you have f function in class b which is which will take an int and which

will not work with no parameter. So, if you still want that you would like to inherit this,

but unlike the earlier example would not like to overwrite this, then you can make use of

what is known as a using definition or using construct, so what you say using a colon-

colon f.

So what does it tell you, it tells you that you are inheriting this base class member

function, and you have overloaded that, but as you inherit you do not want to override

that; so with that, if you do f b dot f 3 then it calls the B class function which is the

overloaded 1, but if you just call b dot f without any parameter then it calls the inherited

function. So we have seen that couple of things if we overwrite we hide the function; if

we overload, we also hide the inherited function; if we overwrite the inherited function

then we have a new function of the same signature in the derived class. But if we want

that we would overload in the derived class, and also use the inherited function from the

base class, then we can make use of this using construct.

So with that, all possible designed combinations can be done. And these are all decisions

that are made in the static type so this is the different situations of static binding.

(Refer Slide Time: 18:29)

Now, let us talk about dynamic binding. So, I again look into the static case; I have one

member function here, which is specialized, which is overridden in the derived class

function. So, if I have two objects, one of the base class and one of the derived classes.

And if we try to put their addresses in a pointer of type base class, and invoke the

function f as in here, then in both cases it will actually call the base class function. While

it calls the base class functions because I am statically binding, because I know that p is a

pointer of type base class, which has this function. So if I do p pointer f, it will call this;

if I do p pointer f, when p is actually pointing to a derived class object, it will still call

the base class member, so that is the basic scenario.

We can change that by introducing the virtual keyword. If we say that this member

function is virtual, and then if we overwrite it in the, again we have the base class thus

everything else is in this example except the fact that the function is now said to be a

virtual one. In the same scenario, I have the same base class type pointer; I have the same

two objects; and the two scenarios, where this points to the base class object in this it

points to the derived class object. I am again trying to do p pointer f look at statically

these are the same expression, but if we do it with the base class object, it invokes the

base class function; if I do it with a derived class object, it invokes a derived class

function.

So, here this was both were going to the base class now the second one which actually

has a dynamic type of being a d type of object, for that object the same pointer

expression pointer invocation expression will take me to the derived class function. So,

that is what dynamic binding is. So, you can see that the expression has not changed

between these two, it is p pointer f, but depending on whether you are pointing to a

derived class object or to a base class object, you are automatically being a bound to

either the derived class function or the base class function. So, this is the basic concept of

virtual function or dynamic binding virtual methods that we have in C++, which will

have several use in.

(Refer Slide Time: 21:18)

So, this is just the example that we had seen in the last module. So, you could just go

through this again for your understanding. So, we have one method, which is non-virtual;

and we have other method which is virtual. And therefore, if we invoke all of these with

the object then the respective member functions are invoked. So when we invoke from B

the member functions of B are invoked; when I invoke from D member functions of D

are invoked.

But when we use a base type of pointer to keep the address of either B or the address of

d, of course, through an UPCAST, and then start doing that the same set of invocations

through the pointer. Then for the base class object, I always invoke the base class

member functions. But for the derived class object, I invoke the base class member

function for a non-virtual method which is static binding which will take me here; but for

a derived class object, I actually invoke the derived class member function because g is a

virtual function g has a dynamic binding in contrast to f which has a non-dynamic or

static binding.

And just to get clarify matters, the similar behavior would be shown if you use the

instead of pointer, if you use reference as well. So these are to reference of the B class

type which has alias to a B object and there is also a reference to a B class type, but it has

a alias to a D object through UPCAST. So, when I invoke g through this reference for the

virtual function g, because actually I am maintaining the reference to a D object my

invocation will go to the inherit will go the D class function the virtual function. So, this

is the basic mechanism.

(Refer Slide Time: 23:32)

So, from based on this, we define the polymorphic type with the virtual function. We can

see that the dynamic binding is possible only for pointer and reference data type. So, we

have shown that if we directly invoke a member functions from the object then there will

be bound statically always. Such functions which are called written as virtual in the front

are known as virtual function, and if a virtual member function is declared virtual it can

be overridden in the derived class as we have seen. If a member function is not virtual,

and it is redefined in the derived class as we have say then the latter definition will hide

or suppress mask the former definition.

So any class that contains virtual member function either by definition or by inheritance,

you may have defined a virtual member function yourself or you may have inherited it

from your parent, but if you have at least one virtual member function, then that class is

said to be a polymorphic type. Polymorphic, because it can take different forms at based

on the run time object that the pointer of the reference is referring to. And certainly a

hierarchy as a whole could be polymorphic or non-polymorphic depending on; if a

hierarchy is non polymorphic then certainly it does not have any polymorphic function or

any virtual function in terms of the classes that it involves.

But, if the base class of a hierarchy has a virtual function or some class has a virtual

function then the whole hierarchy that hangs from that class will become polymorphic.

And as we will see that non-polymorphic hierarchies are really I mean they can be

created, but they just have structural value, but they will have a little computational

value, because you will not be using the major advantage of having the polymorphic

type.

(Refer Slide Time: 25:27)

Now, I would just highlight a little bit of rule on polymorphism. I am taking another

example, where A is the base class; B is a specialization of that C in turn is a

specialization of B. So, this is a simple multilevel inheritance. I have three functions f, g

and h. So, in class A, this is just simply defined, so this is non-virtual. This is defined as

virtual and this is another h is also defined as non-virtual. So, what I can say that this

now has A has at least one polymorphic function or at least one virtual function, so this

whole hierarchy is a polymorphic hierarchy as a first thing we observe.

Then going to class B all these functions are overridden, so B has overridden this which

continues to be non-virtual. g is again overridden in B which continues to be virtual this

is what needs to be noted that once I make a function virtual in a class, then any class

which derives it must get it as a virtual function. And for that it is not mandatory to write

the virtual keyword here.

I may write that as I did in the last example, I may not write that. But even if I do not

write the virtual keyword in front of this inherited function, which I am overriding, while

that inherited function was virtual in the base class that it will continue to be virtual in

the derived class as well. So, once g is polymorphic here, g is virtual here, irrespective of

whether I simply inherit it or I inherit and override it. And I writing the virtual keyword

in front of it may be a good practice, because anybody else can quickly understand that,

but it is not mandatory.

Now, what I do I do something more interesting, I have also inherited h, which was non-

virtual and coming to B, I make it virtual that is now I have written it virtual. So, what

will happen in C, if as c overrides them. This continues to be non-virtual, this was non-

virtual here and both of these which were virtual in B will now become also virtual in C.

So in view of this, if I if I try to see if I have in key in q, I create a C type of object, and I

am using two pointers, one is a q pointer two point, and one is a p pointer two point.

The difference being p is of type ‘A’ type pointer, and q is a ‘B’ type pointer. So, what

happens if I do p pointer f then certainly it is pointing to a C type object, p has the static

type of p is a, f is a non-virtual function in class A, so A colon-colon f gets called that is a

simple static binding case.

But if I call p pointer g then g is a virtual function in A, so the dynamic type of p, which

is type C will be used, and therefore, this function which is the virtual function in C the

overridden virtual function is C which will get called. And if I invoke h, then naturally

again it is like f, it is non-virtual in A, so if I since I am calling from p, it is decided by

the type of p and a colon-colon h the function in a will be invoked.

Now, let us consider q, let us consider the other pointer, I look q pointer f. What is f, f is

non-virtual so this will be statically bound. So what it is non-virtual in B, because q is a

B type pointer. So, now, I have to see what is the definition of the functions in B, because

q is a B type of pointer. Now in q in B, f is a non-virtual, so if I do q pointer f, it will call

the f functions in B, because it is statically resolved. g is a virtual function in B,s so it

will do a polymorphic dispatch, it will be decided based on the type of object that q is

pointing to which is s c type object, therefore, this will invoke the g function in the C

class because it is decided by the type of the object.

The interesting thing happens with when I do q pointer h. When I do q pointer h, q is of

type B, so I will look up the h function in type B. In type B, h function is a virtual

function; now since it is a virtual function, it is invocation it is binding will be decided

by the dynamic type that is the type of C. So, this q pointer h now calls the h function in

C. So, you can see that earlier, when I invoked for the same object, when I did the

invocation from p, it invoked this function A colon-colon h. When I invoked it from

using the pointer to B, it invokes the C colon-colon h. So, here this was static and here

this has become dynamic. And the change has happened because in the derived class B, I

have changed while overriding, I have changed the binding property of the function h.

So please study this example in further detail and try to understand the reason that this is

a basic polymorphic rule that once a virtual it will continue to be virtual in all

specializations. But any non-virtual function, at any stage could be made virtual, and

from that point onwards, downwards in the hierarchy it will continue to be a virtual

function. And the compiler will always take the static type of the pointer and go to that

class see what is the function whether the function is virtual or non virtual. If it is non-

virtual, it will use static binding; if it is virtual, it will create code for dynamic binding,

so that the binding will be decided based on the actual type being used at the run time.

(Refer Slide Time: 32:30)

To summarize, we have taken a deeper look into static and dynamic binding, and tried to

understand the polymorphic type. And in the next module, we will continue our

discussions on various specific issues that arise with the polymorphic types.

