
Programming in C++

Prof. Partha Pratim Das

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture – 39

Inheritance: Part IV

Welcome to Module 24 of Programming in C++. From the last couple of modules we

have been discussing about inheritance in C++.

(Refer Slide Time: 00:38)

We have understood the basic definition and structure of inheritance and in that

connection in this module we would like to try to work out an example of hierarchy of

phones that we use today. We would like to show during this module that, how we can

actually take the abstraction of different concepts, try to create the class modules for

those in C++, organize them the resulted ISA hierarchy in terms of C++ code and create

possibilities for extension.

(Refer Slide Time: 01:30)

So, in terms of the outline as I had mentioned this is the complete outline of what we are

discussing in the basic level of inheritance, we have already talked about ISA

relationship in modeling that OOAD frequently used and using that we have shown how

to express ISA relationship in terms of two or more C++ classes, based on that we have

defined detailed semantics for the inheritance of data members, the inheritance of

member functions.

We have seen that when a class is derived from another base class then it inherits all the

data members and member functions. And the member functions can be redefined with

the same signature to overwrite them or we can introduce definitions of member

functions by the existing name or inherited name with the different signature to overload

that member function as we could do earlier. Further, we have seen how to add new data

members, we have also taken a look into the access specification of the data and member

and functions of a derived class as derived from the base class, we have introduced a new

access specifier called protected, which has special semantics for derived classes. For

derived classes all protected data members of the base are accessible, whereas these

protected data members are not accessible for external functions and other classes.

 (Refer Slide Time: 03:34)

We have also seen the construction and destruction process and the object life time.

Using all those notions we would now move into discussing a creation of a basic module

structure for a set of phones. So, we start with a model hierarchy of phones and we just

start simple assuming that there are three kinds of phones that make our world. The

landline phones, the typical ones that we had been using maybe 20 years back, 30 years

back. Then the mobile phones, the so called nowadays what is more frequently called as

a dumb mobile phone, which can do only restricted functions and the all pervading

variety of smartphones that has invaded our life.

So, in the process of doing that, we will first model a set of helper classes, these helper

classes will allow us to have different types for the attributes that we will need to handle

then we will model each phone separately. For each of these, we will try to write down

an outline of a class description and then we will see that given that, these phones have

certain inherent hierarchy of specialization, how do we combine this code into a C++

inheritance hierarchy and how does that simplify the total model.

(Refer Slide Time: 05:06)

So, to start with we first have a set of helper classes. So, I have not included the details

of these classes, you can work those out. One class naturally that we need is to represent

the phone number certainly and phone numbers as we know that in India, the phone

numbers are 12 digit including the country code. So, it is sum type, which presents 12

digit numbers. Then certainly we need the name of the subscriber, who is actually

subscribing to the phone, we need the name also for our contacts, the people whom we

want to call.

We have provision for having photos of our contacts, so will have some helper class as

photo which will have image and the alternate text for the image and so on. We will have

a class defining ringtones, the audio file and the name of that ringtone, etcetera. We will

have helper class for contact, the minimum information of a contact is a phone number

and name and optionally we could have a photo of that contact also. Of course, there are

several other that are possible, like the designation, like company and so on. We are just

keeping it simple right now. Finally, we will have a helper class address book which is a

collection of maybe set or list of contacts, which we make and maintain in our phone. So,

these were the simple set of basic helper classes let us go ahead with the design.

 (Refer Slide Time: 06:52)

So, first we want to model the landline phone. When we want to model the landline

phone, we identify that if I have a landline phone; however, primitive you can think

about those black heavy sets with rotating dial that, we use to use several years ago. The

basic functionality that a landline phone must support is and ability to call and an ability

to be called back. So, we have call functionality and we have an answering functionality,

without that phone is not defined. So, if I have that, then as we go on to designing the

class for this phone we are trying to create this model. Suppose, I have given it a name

land line phone and for the call functionality, I have introduced a call method, call

member function in the class and to be able to call we need the number that we have to

call. So, the phone number will be a parameter to this call member function.

Similarly, if a call arise then we have to answer that call so, there is a member function

answer introduced which will answer the phone call. In terms of the data members, what

do we need certainly every landline phone has a number of its own, the number at which

it can be called. So, we will have a number member the phone must have been

subscribed by someone so, that is a subscriber’s name and we may have a ringtone,

which for the very old phones are fixed ringtones of what we typically would say like

crink crink sound of the phone, buzzing sound of the phone.

Based on this naturally, we need the constructor to be defined, which will at least take

the name and the number and the subscriber. These two members have to be initialized

for any meaning full construction of the phone, the initialization of this ringtone we

could keep optional, which say that by default it has some specific ringtone. Now, to end

we have also would introduce an overloading in terms of the friend operator function for

out putting the information about this particular landline phone objects. This is required

more for debugging and programming trace purposes then actually the phone

functionality. So, it is an auxiliary functionality, which we add in terms of a friend

function to be able to work with this particular class.

(Refer Slide Time: 09:59)

Let us move on, let us now talk about the mobile phone. Certainly, the mobile phone will

have a call functionality, will have an answer functionality, In terms of the call

functionality, usually in the mobile phone, we would either be able call the number as we

could do in a landline phone, but it is also possible that the mobile phone will have some

kind of a address book mechanism, so that I can keep a set of contacts and I can pick up

some contact by the name and I can call that contact by that name. So, in terms of call we

do see, in terms of mobile phone two options, which one of which that is calling by name

was not available in the landline phone.

In addition to that we have usually we have an option to redial, typically to redial the last

number that was called and in a majority of mobile phones we also have the option to set

a ringtone. So, this of course there are several other that we can think off, but certainly

by mobile phone as I mentioned I am talking about the cellular phones of kind of the

early generations like, typically many of you may have seen and used Nokia 1100 series

kind of phones where you just have ability to be mobile, but you do not have all those

different fancy functionalities that we see today.

Let us see for this simple mobile phone class how do we make the definition, so we have

created the class with the name mobile phone for each of the functionality that, we see

they will have to be some member functions associated. So, for call we will have a

member function, this looks pretty much like the call member functions we are done for

the landline phone class, so which takes a phone number and makes the call, but now we

see that there is additional functionality that, I can call someone by name. So, we will

keep another call member function which takes the name of a person and makes the call.

So, we can see that here because of the duality of the call function, we are having to

introduce overloaded member functions. We will have an answer, which is the answer

member function. We introduce a redial member function to be able to redial a member

function. To set the ringtone which certainly will have to take the particular ringtone that

I want to set and for adding new acquaintances to my address book, I need a add contact

where, I need to specify the number and I need to specify the name of the person. So,

with this we have so, as we start after deciding the name of the class, these are first

things that we complete which will give us the interface, as we say of what this class

should be doing that is a basic functionality of the class, the set of operations for the

class.

Having specified that, now we look into the internals of the classes, if I have to support

these member functions, if I have to support the functionality that I want, what are the

data members that I will need? Certainly so, looking into that certainly I need the number

of the phone which is as before, I need a subscriber name to reach this particular mobile

phone is been subscribed and being mobile phone in all likelihood, it will have the

possibility of setting different ringtones so I have a ringtone members. So, these are

pretty much like what we had seen before, but now we have assumed that it is possible

that we keep the context in our phone. So, I need an address book. So, a book is a

member which will keep, which is an address book that is it will keep a list or set of

contacts that I would like to refer to at often times.

So, if I add do add contact that basically will add the contact here and I would also need

to need a feature, I have a provided an interface that, I would like to redial, just simply

redial the number that I had dialed last. So, I need a member to remember, what is the

last number that I had dialed? So, that brings in this data member, besides that I may

need some of the; so these are the basic data members that I will require to support this

functionality and in addition I will need some more member functions, for example, if I

think about let us say redial.

(Refer Slide Time: 15:41)

So, if I think about redial, if want to then I will need to give a call to; this is the last dial.

So, I will need to give a call to this member function. So, I will have to do call, redial

that will be last dial and that will be my basic redial functionality. So, I need a way to set

this data member, I need a way to remember this data member. So, what does it mean? It

means that when I am dialing some number, I am calling some number I must remember

that.

(Refer Slide Time: 16:25)

So, if I look into the call functionality of the member function, say for phone number star

type then what I will need is to set this particular last dial function; last dial number. So,

here I include this member function which I will invoke from my call method. Similarly,

when I implement the other call, overloaded call method also I will have invoked this,

which will set the last dialed number. Now, you may wonder as to, am I setting up

separate member function to do that? The other option could have been instead of doing

this I could have simply done last dialed or last dial is assigned. I could have simply set

this to p because it is all in the domain of all in the same name space of the mobile phone

class.

The reason I perceive that I will rather have a member function to start with because it is

possible that when I set this last dial number I may want to keep some more properties

along with the just the last dial number, for example, I might want to also remember as to

when did I dial this person the last time. I may want to also remember as to what was

fate of the last call, did it go through or was it missed and if it did go through then what

is a duration for which I took the call and so on. The actual functionality could be

extended, extensible in several different ways. So, it may be lot more than just setting

this last dial number.

So, I try to model that in terms of a member function. So, that is a typical style that we

will often try to follow that, whenever we want to set some member, data member or

may be at times get some data member even from within the member function of the

class, we may want conceive whether we would directly set that or we will use some

private member functions to set them. So that if there are additional functionalities then

those functionalities can also be put through.

(Refer Slide Time: 19:21)

Now, Naturally if we perceive it that way then we need this member function to be

present in the mobile phone class and the question is this member function should it be in

public, answer is no because we have already defined the interface. This is what we want

the interface to be that is what others external classes and global function should be able

to access because that what is a view of the phone that you have. So, if you think about a

physical phone, you have a options for doing all of these interface activities on the

keyboard or the graphics display, your touch screen, the phone, but do you really see any

functionality where you can set the last dial number, you do not because you are not

supposed to do that.

That is internal to the phone and therefore, such member functions are private and as we

say this is for the interface, this member functions are for the implementation. So, you

will in the design you will need to keep this distinction clearly in mind. Similar to that I

may have another member function as show number that when the dialing has happened

when you are calling someone you might want to show the number that your calling or

when an call has come the phone ringing and you want to answer you would like to see

the number that is calling you.

(Refer Slide Time: 20:59)

So, the show number is a member function which is supposed to do all this behavior.

There will be several such additional member functions that you would need, but I just, I

am illustrating two such to explain to you that there could be several member functions

in the private part of the class as well, which are basically supporting functions for

realizing the interface and other supporting functions, which you do not want to make

feasible in the public space. Similarly, we may talk a little bit about this call, which

basically call a person by name.

So, if I have this then what are the functionalities that we will need? Certainly, we need

to, I am sorry, this should be n. So, I need to actually know the number this person has.

So, I would assume that, why do I get the number certainly the number has to come from

the address book. So, I would have to assume that address book will have some kind of

such member function such method which given a name finds out and returns me the

phone number. So, I can have the phone number return in terms of that and once that

have been returned then I can use the other interface function which can make a call

based on a phone number.

We can use that to realize the actual functionality of this call because if you look between

these two overloaded member functions, the basic functionality is the call which is

realized by the first one and the added to your functionality is search person you want to

call and then make a call that is what is realize by the second function here. So, this is

where you write the code to search and then you actually make the call and that is how

you should go ahead with doing design and as you go ahead your finding that I said that I

will not give you the details of the helper classes because their interfaces, their member

functions will kind of get derived from your design because we have just seen this

requirement for an address book. We have seen the requirement to adding a contact the

address book and so on. So, all this will derive the different interface methods that the

address book class should have. By similar reasoning you should be able to find the

different interface requirements of the other helper classes as well. So, we have fairly

detail description of the mobile phone class.

(Refer Slide Time: 24:05)

So, let us move on to the smart phone with respect to the mobile phone, I kept the smart

phone relatively simple; it can call by touch screen. The smart phones typically are

characterized by having a touchscreen. So, earlier I was calling from the mobile phone

with a keypad. Now, I am calling with a touch screen, the basic functionality remains the

same. So, I am now showing the design requirements and the design of the class

together. So, the basic requirement remains the same that I call a number or I call a

name, but I would again need to have both of these, these are overloaded, but what you

should now start realizing that these are situations of possibilities of overriding that is

arising here because I have the same functionality of been able to call a phone number,

but in that functionality what is changing is the implementation of this function.

Earlier it was by keypad, now it is by the touch screen. I have answer, redial these are all

like what we discuss for mobile phone. In terms of add contact, now it thus has a

touchscreen smart display. So, I will need to probably would like to have photos of my

contacts also to be added. So, the interface looks pretty much similar though it may need

reimplementation, these data members are the same as what we did in mobile phone.

These methods, private methods are also same, but I may have additional data members

for example, if it is a smart phone then one major criterion of finding a smart phone is a

size of the display, is it a 7 inch phone, it is a six and half inch phone and so on.

So, I might want to put the size, when I am making a call or I am answering a call I

would like to see the face of the person whom I am calling or who is calling me provided

that person is in my address book. So, possibly I will have a functionality like display

photo as a private member function in smart phone, there could be several others as well.

So, these are basic class descriptions of the landline, mobile and smart phones.

(Refer Slide Time: 26:43)

So, this is the summary of their different functionality and as we had seen before that

there is a strong sense of generalization specialization that exists amongst these concepts

among these classes.

(Refer Slide Time: 26:59)

So, we can quickly conclude that here we have mobile phone is a landline phone and

smart phone is a mobile phone and with that now, we can look at the total functionality.

(Refer Slide Time: 27:15)

That, if we now place that design of the landline phone class and the mobile phone class

and look at them side by side then we see that there are several data member which have

basically common, but there are others which are new. Similarly, there are some methods

which are common, there some methods need new signature and there several other

methods which are new. So, with this observation we can plan actually to combine them

in terms of a hierarchy and reduce minimize the design that we have.

(Refer Slide Time: 27:59)

These are just to show you in terms of how does it look in terms of the UML model?

This is for your further understanding.

(Refer Slide Time: 28:05)

But now, I can just use this observation to model not just the mobile phone and the

landline phone separately, but I can model as mobile phone is a landline phone. So, I

introduce the inheritance here, the moment I introduce inheritance here the need for these

data members do not exist because they exist in the base class and will automatically get

inherited, these members certainly are added. Similarly, when I do this I if I perceive as

we have discussed that we did not have any specific difference in terms of way the

answering is done, we just pick up the call and start talking.

So, I might perceive that the way you answer in a landline phone and the way you

answer in a mobile phone are the same. So, this commented out which means that this

particular function will get inherited from the landline phone, the parent class, but in

terms of the call we need to still define this signature that we need to over write because

the way to call would be very different, for example, a landline phone I may just be using

dial in a mobile. I am using a certainly I am not using a dial I am certainly using some

kind of a keypad keyboard and further I need another version of the call function as we I

has mentioned and which will mean that I have a overload here. So, with this the design

of the mobile phone class gets further simplified.

(Refer Slide Time: 29:46)

We can use that to go further and relate this now with the smart phone. I am trying to

model that smart phone is a mobile phone. So, smart phone is a mobile phone I make the

inheritance, these were earlier commented out because they where common from the

landline phone. In the smart phone, these members are also not required. These data

members and methods and also not required because they will get inherited from the

mobile phone, but I need to add the data member and member function that are specific

to smart phone.

Coming to these naturally answer gets inherited, but call both of these versions of

overloaded call functions in mobile phone need to be again over read. Now, we can see

that this was over written and this is again being over written because the way you call

through a touchscreen is quite different this is also. So, here in terms of the mobile this

was the overloaded in terms of the smart phone. This is now over written from the

definition that you had used in the mobile phone, you are not changing the interface any

more, but you will certainly have a different implementation and all of these additional

functions are certainly inherited. Of course redial also need to be over written because if

your call is over written redial is just another version of the call function

(Refer Slide Time: 31:23)

So, with this put together, now we have if I combine them that I we have a landline

phone, we have a mobile phone which is landline phone specialization. We have a smart

phone which is a specialization of the mobile phone and this is how the class interface

would look like and what I just out line here, I will not discuss it here now because we

have not at ready with all the C++features to discuss this is. If we have a hierarchy like

this then how about generalizing this further and just look at a concept of a phone.

So, the basic concept of a phone is I can call, I can answer, and I can redial. So, can I

think about an abstract phone, which is the generalization of all kinds of phone. So, I say

landline phone is a phone which is an abstraction of all kinds of phone. Then a mobile

phone is a landline phone and smart phone is a mobile phone and so on and there is lot of

advantages of being able to define such abstraction at the root of your hierarchy which

will be the topic of our discussions in the modules may be talk about polymorphism, but

this is what shows the you can create complete phone hierarchy and just for your I mean

if still, if it looks very straight it is multi level simple hierarchy.

(Refer Slide Time: 32:45)

Then would like to draw your attention to something little bit more realistic in terms of

what the phones look like. So, you have a landline phone, which may be cordless hand

set phone or it could be speaker phone. When you have a mobile phone then it is cordless

phone as well as a speaker phone because you can use it for both on the other side there

are video phones which are landed these days. So, where you could actually make video

calls and then you have smart phones as specialization of mobile phones that we have

seen, but they are again specialized with whether they are I-phone or an android phone or

I could have some kind of a tablet phone which is smart phone as well as can be used as

a video phone and so on. So, I just suggest that based on these hierarchy we could try at

home and try to built the similar set of C++inheritance classes which can represent this

hierarchy

(Refer Slide Time: 33:45)

So, to summarize we have use the phone hierarchy here to show, how inheritance can be

used to create effective C++code models for a realistic situations.

