Programming in C++
Prof. Partha Pratim Das
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture — 35
Namespace

Welcome to Module 20 of Programming in C++. In this module we will talk about

Namespaces.

(Refer Slide Time: 00:28)

‘PR e EL LS, ED

Eﬁ Module Objectives

Medule 20
P ratim e Understand namespace as a free scoping mechanism to
D. F
organize code better

NPTEL MOOCs Programming in C4++ Partha Pratim Das

Namespaces are a concept of lexical scoping, of which we have variety of options that
you already know in C++. But, we will expose you to this additional concept of scoping

and how does it help in organising code structure.

(Refer Slide Time: 00:51)

‘PR QL PO G, ED

Eﬂ@ Module Outline

Module 20

@ namespace Fundamental

@ namespace Scenarios

Objectives &
Outline @ namespace Features
o Nested namespace
e using namespace

o Global namespace

o Standard Library std namespace
© namespaces are open

@ namespace vis-a-vis class

o Lexical Scope

NPTEL MOOCs Programming in C++ Partha Pratim Das 3

This is the outline, and you will find it on the left of the every slide as we go forward.

(Refer Slide Time: 01:00)

‘PR Qs PO N)

[@3 namespace Fundamental

Module 20 o A namespace is a declarative region that provides a scope
to the identifiers (the names of types, functions, variables,
etc) inside it

e It is used to organize code into logical groups and to

sssasraca prevent name collisions that can occur especially when

Eundamental your code base includes multiple libraries

@ namespace provides a class-like modularization without
class-like semantics

@ Obliviates the use of File Level Scoping of C (file)static

L

NPTEL MOOCs Programming in C++ Partha Pratim Das
9 » € Z

So, first let me introduce what is a namespace. A namespace, as | said is a declarative
region; it is a scope, like this. So, we already are aware of scope like block, we know that

every function has a scope; we know class has a scope, class some, class name has a

scope. So, namespace is something absolutely similar to that. Here we have a scope it is
a declarative region, within which I can have variety of different identifiers, variety of
different symbols. We have types, functions, variables, classes, and other namespaces

and so on.

The major purpose as | said is to organise the coding into logical groups. And that is a
that is a very critical requirement. And, one of the major reasons that namespace exists is
to prevent name clash, name collision that can occur. Especially, when the code base
include multiple libraries, the code base intends to use names which are reserved by the
third party libraries or standard library, or code base evolves has been developed by
independent developers and inadvertently the same set of names have got used. So, this
is the main purpose off, this is what namespace is, it defines a scope and this is the main
purpose to organise the code. Namespace provides a class like modularization, like we
know that every class definition is kind of a modular definition, but the difference is it
does not have any semantics. It is just a scoping rule, class also does scoping, but it does

scoping with class semantics. Namespace separately will not have any semantics.

And, for those of you who are familiar with file scope in C, like which we say is a file
static variables or file static functions, use of namespace will obliviate the requirement of
file scope, as is used in C. So, if you have been using the same, then whenever you need

that, you should actually not use this and rather use namespace in that place.

(Refer Slide Time: 03:33)

PR e QES PO ST

P
! ! rogram 20.01: namespace Fundamental
LA" g P

o 2
Module 20 Example

#include <iostream>
using namespace std;

namespace MyNameSpace {
int myData; // Variable in namespace
void myFunction() { cout << "MyNameSpace myFunction" << endl; } // Function in namespace
class MyClass { int data; // Class in namespace
public:
MyClass(int d) : data(d) { }
void display() { cout << "MyClass data = " << data << endl; }

3

namespace
Fundamental

{ int main() {
MyNameSpace: :myData = 10; // Variable name qualified by namespace name
cout << "MyNameSpace::myData = " << MyNameSpace::myData << endl;

MyNameSpace: :myFunction(); // Function name qualified by namespace name

MyNameSpace: :MyClass obj(26); // Class name qualified by namespace name
obj.display();

are treated as global

Partha Pratim Das

Let me introduce you to the actual code as to how to write this, this is not otherwise a
meaningful example. So here, | am saying namespace is a keyword with which like the
class keyword you do and that should be followed by the namespace name. So, the
syntax is pretty much like how you define a class. It has an associated scope in terms of
matching curly braces, and anything that you write within that namespace is belongs to
the namespace, which means that any symbol that you write inside this gets qualified by

the name of the namespace.

So, here | show 3 different kinds of entries. One is a name of a variable, my data, one is a
function and one is a class, my data, my function, my class. And then, in the main | show
how to use that. If | want to use the data, then I need to write it in this form. So, you can
see that the variable name was my data that has got qualified by the namespace name.
This is exactly how class names qualify, for example, 1 would immediately remind you
about static data members in classes this is how you write the static data members in
classes. So, the namespace name followed by the symbol name, separated by the scope
resolution operator is a way to refer to the namespace object. For example, for the
function that we have above, this name is, for the class, this name. In this context of the
namespace, here if I simply write my function and try to invoke that then I will get

compilation error. Because, there is nothing called no symbol called my function in this

program. The, my function symbol is within the namespace and therefore will always
have to be prefixed with the namespace. So, this is a basic way you define namespaces

and you use namespaces.

(Refer Slide Time: 05:43)

B RS SRR S S B B\

W Scenario 1: Redefining a Library Function
P28y (Program 20.02)

o returns the absolute value of parameter n
Module 20 @ Your that returns the absolute value of parameter n if n is
be
@ Once you add your abs, you cann bs from library! It is hidden and gone!
@ Namespace comes to your res
Name-hiding: abs() namespace: abs()
#include <iostreans #include <iostreams
#include <cstdlib> #include <cstdlib>
namespace myNS {

int abs(int n) { int abs(int n) {

namespace if (n < -128) return 0; if (n < -128) return 0;
Scenarios if (n > 127) return 0; if (n > 127) return 0;
if (n < 0) return -n; if (n < 0) return -n;
return n; return n;
¥ ¥
int main() { int main() {
std::cout << abs(-203) << " " std::cout << myNS::abs(-203) << " "
<< abs(-6) << " " << myNS::abs(-6) << " "
<< abs(77) << " " << myNS::abs(77) << " "
<< abs(179) << std::endl; << myNS::abs(179) << std::endl;
// Output: 0 6 77 0 // Output: 0 6 77 0
return 0; std::cout << abs(-203) << " "
} << abs(-6) << " "

<< abs(77) << " "

<< abs(179) << std::endl;
// Output: 203 6 77 179
return 0;

NPTEL MOOCs Programming in C++ Partha Pratim Das 6

Let us look at two scenarios, one simple and one little bit more involved. Here is the
scenario where | am trying to redefine the library function. So, all of us know that library
function has an ABS function, standard library has a ABS function which finds the
absolute value, but | want to give a different behaviour to that. | want to say that within
minus 128 and 127 it will find the absolute, but otherwise if it is outside that range then it
will return a zero. So, the simple way to do this, I define the abs function and start using
it, and the flip side of this is if we do that then, the abs function that exists in the C
standard library is hidden, that is once | have defined my abs function, then the abs
function that is available from the library is no more available. So if | just use abs, it will
always mean my abs it will never mean the abs that existed in the library. So, I lose by
this if 1 do this in C and of course, then we can do it in C++ | lose the ability to actually

refer to the original library function.

So, namespace provides a nice solution to that. If | want to do this and also want to keep

referring to the library function, I can still define my abs function, but I will just put it in

a new namespace. So, | have given the name of that as my n s. So, with that if | refer to
the abs function as my n s colon colon abs, then it refers to this function. But if I just say
abs, since there is no abs available because this particular new version of abs is within
my n s name scope. So, if | just say abs then it means the abs of the one that exists in the
standard library. In this way | can protect my new introduced definitions without
clashing with the library name that exists. This is one very typical requirement that you

will often face and this is a solution using namespace is a good solution.

(Refer Slide Time: 08:04)

L B
Scenario 2: Students' Record Application:

r‘
Lﬁj The Setting (Program 20.03)

An organization is developing an application to process students records
@ class St for Students and class StReg for list of Students are:

#include <iostream>

using namespace std;

class St { public: // A Student
typedef enum GENDER { male = 0, female };
St(char *n, GENDER g) : name(strcpy(new char([strlen(n) + 1], n)), gender(g) {}
void setRoll(int r) { roll = r; } // Set roll while adding the student
GENDER getGender() { return gender; } // Get the gender for processing
friend ostream& operator<< (o & os, const St& s) { // Print a record

cout << ((s.gender == St::male) ? "Male " : "Female ")

namespace << s.name << " " << s.roll << endl;

Scenarios return os
}

private:
char *name; GENDER gender; // name and gender provided for the student
int roll; // roll is assigned by the system

};

class StReg { // Students’ Register
St *xrec; // List of students

Module 20

int nStudents; // Number of student

ic:
StReg(int size) : rec(new St*[size]), nStudents(0) {}

void add(Students* s) { rec[nStudents] = s; s->setRoll(++nStudents); }
Students *getStudent(int r) { return (r == nStudents + 1) 7 0 : rec(r

};
@ The classes are included in a header file Students.h

NPTEL MOOCs Programming in C++ Partha Pratim Das 7

Let me quickly run through a development scenario. This is what very regularly happens
in any organisation. Suppose, an organisation is developing an application to process
students’ records and let us say there are two classes; one for the students. So, we have
two classes; this represents a student and this represents a list of students. You may not
really bother about the details though it actually is a correct program. So, you could at a
later point of time read through and actually find what this program is doing. It certainly
has different, it has the constructor, it has a sums and get functions and it has a output
operator to be able to write a student record. And, this has a list and it keeps track of the
number of students that exist and it has an option to add a student to this list. So,
whenever you add a student the roll number of that student gets allocated. In terms of

developing this processing application, what the organisation does and that is very

typical that somebody senior of the designers will possibly have designed this classes.
And then the task is given to multiple developers to develop different parts of the system.

So, these classes are designed and given in a header file, student’s dot h.

(Refer Slide Time: 09:28)

CH PR QESPS T
Scenario 2: Students’ Record Application:

iﬁ;‘ Team at Work (Program 20.03)

ng applications for male and

— are assigned to dev Ip[mr(—

Module 20 o alie h file
aa he y to gmr what they pr oduce and
prepare a single application for both male and female students. The engineers produc

Processing for males by Sabita Processing for females by Niloy
J7777777777777 Kppi.cpp 77777777777777 7777777777777 App) <pp //////////////

#include <iostream> #include <iostream

g *
s() { Sv.duen: O {
“MALE STUDENTS " << endl; "FEMALE STUDENTS: " << endl;
int r = 1; St *s; int r = 1; St *s;
while (s = reg->getStudent (r++)) while (s = reg->getStudent (r++))
if (s->getGender() == if (s->getGender() ==

St::male) St::female)

cout << #*3; cout << *s;
cout << endl << endl; cout << endl << endl;
return; return;

namespace
Scenarios

}
////////////// Mazn cpp /1111111111117 1//1171111/17/ Main.cpp /1111111111111
#include <iostr: #include <iostream>
using namespace scd using namespace std;
#include "Students.h" #include "Students.h"
StReg *reg = new StReg(1000); StReg *reg = new StReg(1000);
int main() { int main() {
St s("Partha", St::male); reg->add(&s); St s("Ramala", St::female); reg->add(&s);
ProcessStduents(); ProcessStduents() ;
return 0; return 0;

} }
NPTEL MOOCs Programming in C+++ Partha Pratim Das 8

At this point the responsibility is given to; let us say to engineers, by dividing the
development, separately for male students and for female students. They will have
different requirements of hostel, different requirements of subject classification and so
on. So, this is what is being done by Savitha, for male students; similar development
being done by Niloy, for female students; and Poornima is their lead, who finally has to
integrate both these applications into your final applications. So what happens is, it may
be incidental, coincidental, whatever, is Savitha calls this whole processing application
that she is doing for the male students as process student; and, Niloy also chooses the
same name of the function. And then, they write independent main applications to test
out whatever they have developed. You need not bother about what this is doing, this
basically is, if this application prints the male students, this application prints the female
students, but that is just an indicative one | am not really concerned about what the
processing is happening. But the fact is that, they have chosen incidentally the same
function name and independently developed it together. Now, both of them submit the

code to Poornima, the lead, now Poornima has to put them together.

(Refer Slide Time: 10:56)

T R R R S ST v B\ |

ré‘q Scenario 2: Students’ Recoré Application:
P28

The Integration Nightmare (Program 20.03)

@ To integrate, Purnima prepares the followir
Module 20 processing s for males (as prepared

() in her Main. cpp where she intends to call the
Sabita) and for females (as prepared by Niloy) one

#include <iostream>
using namespace std;
#include "Students.h"

void ProcessStduents(); // Function from Appl.cpp by Sabita
void ProcessStduents(); // Function from App2.cpp by Niloy

StReg *reg = new StReg(1000);
St s1("Ramala", St::female); reg->add(&si);
St s2("Partha", St::male); reg->add(&s2);

ProcessStduents(); // Function from Appl.cpp by Sabita
ProcessStduents(); // Function from App2.cpp by Niloy

return 0;

@ How does Purnima perform the integration without major changes in the codes? —

namespace

NPTEL MOOCs Programming in C+++ Partha Pratim Das 9

So, certainly, if we just refer back once, Poornima will neither use this main, nor will use
this main, because she has to integrate both of this codes. So, she will have to write a
main unified application of for all. So, she tries to write that. So, she has to call these
functions, the process students’ functions. She has to put their definitions on top and she
finds that, both of them use the same function name. So, if she would copy their codes,
then this is what it will look like this is the same. As you can understand that this will
give a name clash and it cannot be same, it will simply not compile. Now, whole

integration process has failed.

I have shown in terms of a function name just as a indicative one, but in reality, certainly,
the application would have would be in couple of thousands of lines. There could be
several symbols, several functions, global variables, class names, several types and so
on, which may have the same name between the two developers. There could be more
developers also. There could be that in some cases, the names that are same between two
developers’ programs or code means the same thing; in some cases, same name as used
by Savitha, will be used by Niloy in a different meaning. So, this is a very very difficult
problem. If Poornima has to integrate, she has to understand the whole code and then edit
that make changes within that and that will become a complete nightmare. So, this is

what is known as the integration nightmare that typically happens in an organisation.

But, the other side of the fact is independently both the applications as developed by
Savitha for the male students and by Niloy for the female students independently they
work, it’s only that the, they are sharing certain common names and therefore namespace

turns out to be a panacea which can solve this problem very easily.

(Refer Slide Time: 13:15)

PR E LSO WD
Scenario 2: Students’ Record Application:

(k¥
P28 Wrap in Namespace (Program 20.03)

@ Introdu;
@ Wrap the respe

- Sa a3
Module 20 App1 for Sabita and App2 for

Processing for males by Sabita O, Processing for females by Niloy
T7777777777777 hppi-cpp 77777777777777 7777777777777 hpp2-cpp 77777777777777
#include <iostream> #include <iostream>
using namespace std; using namespace std;

#include "Students.h" #include "Students.h"
extern StReg *reg; extern StReg *reg;

namespace

P names; Appi { App2 {
S pace App: namespace App!
Scenarios void ProcessS void ssStduents () {

"FEMALE STUDENTS: " << endl;

cout < "MALE STUDENTS: " << endl;
int r = 1;

St »s;
while (s = reg->getStudent(r++)) while (s = reg->getStudent (r++))
if (s->getGender() == St::male) if (s->getGender() == St::female)
cout << *s; cout << *s
cout << endl << endl; cout << endl << endl;
return; return;
} &
} s
NPTEL MOOCs Programming in C+++ Partha Pratim Das 10

All that Poornima now has to do is to take the applications that Savitha had developed
and Niloy had developed and put them into two different namespaces. She decides on
two names, app 1 and app 2 and puts Savitha’s developments in this, puts Niloy’s
developments in this. So, once that has been done, then within this application, it is all
within the same namespace. So, the application still works. This part will still work, but
when you are outside when you are looking at from main functions point of view these

two are into two different namespaces. So, they are basically, different functions.

(Refer Slide Time: 14:01)

‘PR e QL PO G, ED

W Scenario 2: Students’ Recard Application:
P28

A Good Night's Sleep (Program 20.03)

@ Now the integration gets smooth

Module 20
#include <iostream>

using namespace std;

#include "Students.h"

App1 { void F O: } // Appl.cpp by Sabita
namespace App2 { void ProcessStduents(); } // App2.cpp by Niloy

StReg *reg = new StReg(1000);

P
Scenarios St s1("Ramala", St::female); reg->add(&s1);

St s2("Partha", St::male); reg->add(&s2);

App1::ProcessStduents(); // Appl.cpp by Sabita
App2: :ProcessStduents(); // App2.cpp by Niloy

return 0;

@ Clashing names are mac de distingui by distinct names

NPTEL MOOCs Programming in C++ Partha Pratim Das 11

So, then she will come back after putting encapsulating them into namespaces. Now, she
is back into the integration. This is, Savitha’s applications is now quite processing
students function in app 1 namespace; for Niloy, that is in the app 2 namespace. So, all
that she needs to do is, by doing this, she has resolved the clash of name between the two
development units and in terms of the application, all that she needs to do is to use the
namespace prefix and call the two functions independently, one after the other or

whatever she wants to do.

So, this is a very typical approach, which can solve a huge amount of practical
integration problem and that needs to be kept in mind. Of course, it is not a good idea
that multiple developers in the same system will not be able to coordinate and resolve to
have distinct names, but it often is a good idea to use namespace also to make different
modules so that in between different modules you will not have to really bother about
what names, what different supporting functions, supporting classes and all that, you
may be using. So, if we are doing a student record development, there could be one
module which deals primarily with the students’ academic part; one module deals with
the students fees; one module deals with the students hostel; another module will deal

with their timetable and so on. So, a good way to organise the code and to the design

would be to assign different namespaces to this modules and basically separate out the

code in that manner, so that you make sure that it will never clash among themselves.

(Refer Slide Time: 15:43)

N R I N R I A S S A v B |

3
!@! Program 20.04: Nested namespace
L—" g n P

i @ A namespace may be nested in another namespace

#include <iostream>
artha Pratim N
D. using namespace std;

int data = 0; // Global name ::

namespace namel {
int data = 1; // In namespace namel
namespace name2 {
int data = 2; // In nested namespace namel::name2
}
}

int main() {
cout << data << endl; // 0
cout << namel::data << endl; // 1
cout << namel::name2::data << endl; // 2

return O;

NPTEL MOOCs Programming in C++ Partha Pratim Das 12

So, let me just to complete the discussion you have understood why namespace is
important. So, let me just go over the quick features that a namespace has. As | said, it is
very similar to class; like class, the namespaces can be nested. So, | have a namespace
name 1 here and within that | have another namespace. So, all that happens is, if I nest
one namespace into another, the name of this nested namespace is qualified by the outer
namespace. So, that is the simple thing. So, which means that this data is in the
namespace name 1 whereas, this data is in the namespace of name 1 colon colon name 2,
because this itself is name 1 colon colon name 2. So, if we write this code, if | just write
data then, data is only outside so it will mean this data. If | write name 1 colon colon data
it means this data, if | write name 1 colon colon name 2 colon colon data, it means this
data. So, as you keep on nesting namespaces, more and more prefix get added. So, any

level of nesting is possible for namespaces.

(Refer Slide Time: 16:56)

‘PR QL PO G, ED

r‘é‘! Program 20.05: Using using namespace and
P28y

using for shortcut

° i i z .
Module 20 Using using namespace we can avoid lengthy prefixes

#include <iostream>
using namespace std;

namespace namet {
int vi1 = 1;
int v12 = 2;
¥

namespace name2 {
int v21 = 3;
int v22 = 4;
}

using namespace namel; // All symbols of namespace namel will be available
using name2::v21; // Only v21 symbol of namespace name2 will be available

int main() {
cout << vi1 << endl; // namel::vii
cout << namel::v12 << endl; // namel::vi2
cout << v21 << endl; // name2::v21
cout << name2::v21 << endl; // name2::v21
cout << v22 << endl; // Treated as undefined

return 0;

}

Partha Pratim Das

NPTEL MOOCs Programming in C+-+

Often, if you do it like this then it might become difficult that as you have multiple
nestings and multiple symbols that you want to use, every time you will have to put the
namespace name. So, there is a shortcut that you can use. There are basically two
shortcuts that you can use; one is these are called using. So, one shortcut that you can do
IS, you say using and then you put a name of a namespace. So, you say using namespace
name 1. What this will mean is any symbol that is subsequently used after this; you will
try to check if this namespace name 1 has that symbol. And if it has that symbol then you

will be referring to that symbol. So, this is the feature of using namespace.

The other using feature is, you can say using and you can say that, actually a qualified
symbol itself. So, if you specify a qualified symbol, name qualified symbol then
whenever later on you just talk about the symbol name, it will mean this qualified
symbol. So, this example should help. So, | have two namespaces, name 1 and name 2;
name 1 has two symbols; name 2 as two symbols; and, | have a using on name 1, the
namespace name 1 and | have a using on this particular symbol, variable of name 2. So,
what happens? If | say v 1 1, what it will check? It will check that I am using namespace
name 1. So, does v 1 1 exists in that namespace; it does. So, it associates with this. If |
say, name 1 colon colon v 1 2, it will associate here. So, you can see that even when | am

doing using it is not mandatory that | will have to use the short form. In place of saying

this, 1 could have simply written v 1 2; that also would have referred to the same variable
in name 1, because | have a using namespace name 1. But, it is not mandatory | can use
the using shortcut or | can also use the fully qualified name, as | have done here. Think
about v 2 1.V 2 1 will mean this. Why? | do not have a using on namespace name 2. But,
| have been using on this particular symbol itself. So, if | say v 2 1 it means that, it is

name 2 colon colon v 2 1 and it will be right.

Similarly, | can also directly still refer to this, by saying it is name 2 colon colon v 2 1;
this also is permitted; explicit use of name is permitted. Think of v 2 2; v 2 2 belongs
here. | do not have a using on name 2 namespace. So, v 2 2 cannot mean this one, this
particular entity neither I have a using on, like name 2 colon colon v 2 2; | do not have
that. So, the compiler cannot see any v 2 2 symbol in this code and the compiler will
treat this as undefined. It will say, there is no symbol called v 2 2. This a basic use of
using; as such, you have been seeing this in the whole code so far | had mentioned at the
very beginning that, we will keep on writing this because all of the standard library
symbols are in the namespace Std. So, writing this makes our life easier otherwise, your
c out will have to be written as std colon colon ¢ out; ¢ in as std colon colon ¢ in and so

on.

(Refer Slide Time: 21:06)

‘PR gEHEL PSS BN

Eﬁ] Program 20.06: Global namwéspace

@ using or using namespace hides some of the names
Module 20 & 8 P

artha Pratim #include <iostream>
[BETY using namespace std;

int data = 0; // Global Data
namespace namel {
int data = 1; // namespace Data

¥

int main() {
using namel::data;

cout << data << endl; // 1 // namel::data -- Hides global data
cout << namel::data << endl; // 1
cout << ::data << endl; // 0 // i:data -- global data

return 0;

|tems in Global namespace may be accessed by scope resolution operag

NPTEL MOOCs Programming in C++ Partha Pratim Das

Now, let us also talk about the global namespace. Suppose, | have an example. Let us
understand the example; | have a variable written in the global scope data. In the
namespace name 1, | have a variable data. Now, as such they are resolvable if you do not
think about this program given below, they are resolvable, because if | write data, it
means this and, if I write name 1 colon colon data then it means this, clear. But, let us
suppose in this function main, | have a using for name 1 colon colon data, right. So, what
does it mean? It means that, now if | talk about data, it means this data; it does not mean
this data anymore; because, | have a using on name 1 colon colon data. So, it says that,
name 1 colon colon data will be known as a data in, from this point onwards. So, if | say

data, | get this.

If I say name 1 colon colon data, | also get this. So, what it means is that, | have lost the
ability to get access to the data which was not defined in the namespace, which is defined
outside. So, C++ gives us a mechanism to be able to access those symbols, which are in
the global space, which are in the global scope. All that you do, you use the same
notation, but just that the global, the consideration is kind of that, the global scope also as
if at a namespace, but that namespace has no name. So, it is just a blank name. So, all
that you do is, just put colon colon data. So, that will always mean the name in the global

scope. So, that is a basic concept of the global namespace that exists.

(Refer Slide Time: 23:15)

‘PR e QEL LS, ED

Eﬁ Program 20.07: std Namesf)"ace

Lzl « Entire C++ Standard Library is put in its own namespace, called std

Without using using std With using using std

#include <iostream> #include <iostreams
using ce std;

< "Enter a value: " ;
cin >> num;

cout << "value is: " ;
cout << mum ;

return 0;

¥

e By the
std nan

statement using namespace std;
current
s to the

ithin
the library without having to qualify each one
with std:

® It is useful if a few library is to be used: no need ® When several libraries are to be used it is a
d entire std library to the global namespace convenient method

NPTEL MOOCs Programming in C++ Partha Pratim Das 15

Standard namespace, so we have been talking about this that, all C++ puts all its standard
library symbols, classes, functions, everything in the std namespace. So, if we just
include 10 stream and want to do, write a program using this, then every time we will
have to prefix the symbol with the std colon colon. For example, if | have to write endl, |
have to write it as std colon colon endl, endline. So, we can do a shortcut by putting this
using namespace std. What will mean that, if 1 write C out, it will also check if std
namespace has a C out; it does have one. So, std will relate to that. So, std namespace is
the most important namespace that is available to us. There are couple of more

namespaces also defined. We will talk about those later.

(Refer Slide Time: 24:09)

N I R R I A S S A v B\ |

!F" "1! 9,
Ed Program 20.08: namespaces are Open
@ g p p

@ namespace are open: New Declarations can be added

#include <iostream>
using namespace std;

namespace open
{ int x = 30; }

namespace open
{ int y = 40; }

int main() {
using namespace open;
x =y = 20;
cout << x << " " KL ¥y ;
return O ;

¥

Output: 20 20

NPTEL MOOCs Programming in C+++ Partha Pratim Das 16

One very interesting concept about namespace is namespaces are open, in the sense that;
think about a class if you just define a class, then whatever symbols you put within that
class, the data members, the functions and so on, the friend and all those that has to be
put into the one integral definition of the class. And, once that scope is over then you
cannot add new symbols to that scope of the class. But in namespace, that is different.
So, that is what is meant by the namespaces being open. So here, | have created a
namespace open, where | have put a symbol x. The scope is closed; this started here, it
closed it here. But then, | again say namespace open and put another symbol; that is...

So, what happens is, this will get added to the same scope. Now, it says basically, the

namespace open has two symbols, symbol x as well as symbol y. So, simply if we say
using namespace open then | can use both x and y and from the same namespace, they
will, x will bind here and y will bind here. So, this openness is an interesting concept
which is very flexible, so that, you can, in multiple, different files also, different parts of

the namespace may be specified.

(Refer Slide Time: 25:27)

R - R B A A B - B\ |

Eﬂ] namespace vis-a-vis class

Medule 20 namespace class
dartha Pratim

Das & Every namespace is not a class e Every class defines a namespace
A namespace can be reopened and ® A class cannot be reopened
more declaration added to it
No instance of a namespace can be e A class has multiple instances
created
* using-declarations can be used to e No using-like declaration for a
short-cut namespace qualification class
* A namespace may be unnamed e An unnamed class is not allowed

namespace
vis-a-vis class

Partha Pratim Das

NPTEL MOOCs Programming in C+4+

Since we have been talking, referring frequently to the concept of class and comparing
with the namespace this is just a summary of that comparison. Between the namespace
and the class every namespace is not a class and every class in turn defines a namespace.
it does give you the same qualification ability. Namespaces can be reopened, but and
more declarations put into it. In terms of class, there is nothing like that. Certainly,
namespaces cannot be instantiated; classes are meant to be instantiated for objects. Using
mechanism is available for namespace; certainly, for class there is no sense of doing that.
And interestingly, a namespace may be unnamed; | can have a namespace just to
segregate some of the symbols and just to put them together, but not to access them from
outside. See, why you need the names of the namespace so that from outside, by using
the using declaration or directly you can access the symbols inside the namespace. Now,
if 1 just want to blindly hide some symbols and just want them to interact between

themselves | can put them in a namespace and not give a name to that namespace. If | do

not give a name to that namespace, nobody from outside that namespace has an access to
the symbols within that namespace. So, unnamed namespaces have a meaning; obviously

unnamed class is meaningless. It is not allowed.

(Refer Slide Time: 26:56)

‘PR QL PO G BN
¥,

72 N
i:ﬁ;" Lexical Scope

@ The scope of a name binding an association of a name to an entity, such
as a variable is the part of a computer program where the binding is valid:

tha Pratim where the name can be used to refer to the entity
Da:

Module 20

@ C++ supports a variety of scopes:

@ Expression Scope — restricted to one expression, mostly used by
compiler

Block Scope — create local context

Function Scope — create local context associated with a function
Class Scope — context for data members and member functions
Namespace Scope — grouping of symbols for code organization

File Scope - limit symbols to a single file
Global Scope — outer-most, singleton scope containing the whole
program

Lexical Scope

NPTEL MOOCs Programming in C++ Partha Pratim Das 18

Before | close | would like to just remind you that, namespace belongs to one of the
different lexical classes that C++ define. And, this is just to recap that these are the
different lexical scopes that you have. The expression scope is what you, where the
temporaries are used for computing different parts of an expression and they have a
scope within the expression itself. Most often, we do not get to see these temporaries. So,
it is only compiler who handles that. But, we have been frequently dealing with the block
and function scope, particularly in C; and, also the file and global scope in C. And,
having come to C++, these exist and in addition we have the class scope and the

namespace scope that we have just discussed.

(Refer Slide Time: 27:51)

N S R R R S G S SRR - B\ |

r" 5 o,
iﬁi} Lexical Scope

@ Scopes may be named or Unnamed

Module 20
@ Named Scope — Option to refer to the scope from outside
@ Class Scope — class name
@ Namespace Scope — namespace name or unnamed
@ Global Scope —"::"
@ Unnamed Scope
@ Expression Scope
@ Block Scope
@ Function Scope
@ File Scope

@ Scopes may or may not be nested

@ Scopes that may be nested
@ Block Scope
@ Class Scope
@ Namespace Scope
@ Scopes that cannot be nested
@ Expression Scope
@ Function Scope — may contain Class Scopes
@ File Scope — will contain several other scopes

@ Global Scope — will contain several other scopes
NPTEL MOOCs Programming in C++ Partha Pratim Das 19

As you can note that scopes may be named or unnamed; like class scope will always
have to have a name. Namespace scope will usually have a name, but may be unnamed
also. Global scopes do not have a name, but can be identified by this scope resolution
operator. And these scopes, like expression, block, function and file scope, do not have
any names they are unnamed. And also, the scopes may be nested, like block scope, class
scope, namespace scope; they may be nested. But, there are certain scopes like function
scope or expression scope, they cannot be nested. But some of them can contain other

scopes, but may not contain themselves.

So, this is just to summarise because it is very important to, specifically know the lexical
scope, because C++ happens to be a strongly lexically scoped language. It does not have
dynamic scoping; that is, it does not have execution dependent name binding. It is a
whole name binding, that is what it associates, how it associates memory with a variable
name is completely dependent on the lexical scope, completely dependent on the static
time. Therefore, it is very important that out of these all different options of specifying
variable names and restricting their visibility and accesses, which is the right one, in a

right design situation and use that.

(Refer Slide Time: 29:24)

N I R R R G S ST B\ |

72
b:ﬁ;'i Module Summary

-,

Module 20

Understood namespace as a scoping tool in c++
Analyzed typical scenarios that namespace helps address

Studied several features of namespace

Understood how namespace is placed in respect of
different lexical scopes of C++

Summary

NPTEL MOOCs Programming in C++ Partha Pratim Das 20

And, namespace only helps to extend that kitty of lexical scopes and particularly, is a
powerful tool for organising your code and particularly accessing libraries and
segregating your library from symbols of your library from symbols of other third party
libraries and so on. For example, if you are developing a library which you want to share
out to others, it always a good idea that you put a meaningful namespace name to that
whole thing and put that whole development within that namespace, like the standard
library is using std and then give it to the user, so that it will not have a possibility that
the, you have used certain function names or class names in your library which the user

also wants to use, but are not able to do so.

So, that is about the namespaces and we will close here.

