
Programming in C++

Prof. Partha Pratim Das

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture – 28

Copy Constructor and Copy Assignment Operator (Contd.)

Welcome back to module 14 of Programming in C++. We have been discussing about

copy, we have discussed about copy construction at depth and we have introduced what

is copy assignment operator.

To quickly recap, we do a copy construction when you want to make a clone of an object

which does not exist and we do copy assignment, when we have an existing object and

want to copy in other object of the same type into this existing object. We have seen that

a copy assignment can be defined as a function operator function and it takes the

parameter as a constant reference of the class and it returns a non-constant reference of

the same class, it may return a constant reference of the class as well.

(Refer Slide Time: 01:19)

.

Now, we will look into some of the more tricky areas of copy assignment. So, you recall

that in terms of copy construction, you have already explained the notion of shallow

copy and deep copy and now we will have; we will see that the consequences of shallow

copy and deep copy also percolates into copy assignment. So, particularly focus this is a

string example and focus on the copy assignment operator.

Now, what you are trying to do, you are trying to. So, this is your, let me just draw the

two objects. This is s 1, this is s 2. So, this is football. So, whatever it will have, it will

have a length 8. This is cricket; this will have length 7. Now, I am trying to copy. So, I

am trying to do s 2 assign s 1. So, if I copy this, naturally I will need to; while I do

coping I know that this string will have to be copied here and we know there are two

options to that. One is to copy the pointer; other is to actually copy the object. So, we

would like to do deep copy, in this case we are doing a deep copy. So, you have making

strdup of a parameter s, which is basically strdup of s 1.

Now, when you assign that to str then what will happen? Simply, so another football has

got created, strdup we have done duplicate. So, another football has got created. Now, if I

put this pointer into str, naturally I will lose this pointer and there will be no way to

retrieve this string any further. So, before I can do this, I have to free up, otherwise the

resource will leak, memory will leak. So, this is a critical point. I will first have to free

this up and then I am doing a string copy. So, as I free this up this is gone, I do a strdup.

Now, I have a new football pointed to here, this will get copied. So, this will become 8 as

in here at the objective is returned as it was done in the last case.

Just note that this is basically returns a starts this is a current object. So, it returns that

because it has to return the object to which the assignment is happening. So, this object

can now be used for chain assignment, as I have explained. This can be used in the chain

assignment as I have explained already. So, this is how a copy can be done for a string

with deep copy that is similar strategy can be used whenever we have pointer members

in the object.

(Refer Slide Time: 05:01)

.

Now, lets us look into a very small, but dangerous issue with the code that we have

already seen. This is the code, exactly the code that you have seen, the only difference

being earlier we were coping s 2 to s 1. Now, I have copied s 1 to s 1. Now, you can very

legitimately ask me, as to why should somebody write this kind of a code that to answers

to that what, one is what if somebody writes. We have to know, what is going to happen.

The other issue is that not always the code will look like this, for example, it could be

that I have a string, I have a reference to s 1 that is done somewhere; I do not know

where this is done.

This may have been done in some other function, in some other class whatever it is come

and now I am doing s 1 assigned r. Syntactically, looking at the code it does not look like

a self copy, but it actually the self copy. So, self copy is a potential situation that we must

look into now certainly there are issues that the reason we are trying to look into this.

So, look into this is the self copy. So, this is what I have, this is my s 1, this is my string,

my s 1 is football. So, I have football and a weight here. Now, I am doing s 1 assign this

one. So, what will happen? This will execute first, this is my s 1. So, this will free this

up. Now, this will try to do this, that is it will try to take this object s dot str, make a copy

make a copy into something and then assign it here. Now, this object is already gone this

is been freed up. So, what you make copy of here is not known, is not question mark it is

just not known, it is something invalid and then so on.

So, quiet expectedly what you get after the copy, when you print it after the copy you get

a garbage, I got a garbage, while I was running it, but it is quite possible that instead of a

garbage, it could be a crash because it just depends on what memory is getting violated.

So, self copy with pointer type of data is something which is quite, which could prove to

be quite difficult to deal with. So, we will have to do something about that.

(Refer Slide Time: 08:10)

.

So, the way we handle this and that is very typically is all that you want to say that if I

am doing a self copy, if I am doing this, then all the time need to tell my copy assignment

operator is that do not copy. If you are doing a self copy then all that I would like to tell

is do not copy because it is bypass, it is a same object. So, the rest of the code remains

same, but all that I add is check, if it is a same object. How do I check if it is a same

object? Just understand s 1 is being assigned s 1. So, it is s 1 dot operator assignment s 1,

this become s and this is the object on which the invocation has happen, so this is star

this.

So, you want to see whether star this and s, are same. We cannot compare objects like

that because this could be any object, I do not have a comparison operator for that. These

are not like integer that I can write equal to equal to but what all that I know is, if it is a

same object then it resides in the some memory. So, if these 2 have to be same then this

has to be same as ampersand s. Their addresses have to be same, if the addresses are

same that is the same object; if the addresses are different they are not the same object.

So, all that you simply do is check, if the addresses are different. If the addresses are

different you go through the copy if it is not then you simple by pass. So, these are small

point about self copy in copy assignment operator that you should always keep in mind

and this is a typical way to write a copy assignment operator, particularly in the cases

where you have pointer type of data members.

(Refer Slide Time: 10:14)

The signature of the copy assignment operator, we have already seen. This is a typical

signature and this is a basic structure that we have shown you first check for self copy

then you release any resource that is currently held by the object being assigned to and

then copy the rest of the members to the current object. It can be one of this it, that is it is

also possible that you do not use const you just do a copy without a constant on the

parameter.

So, which means the during copy actually the object you are coping from can get

changed and we will see that this has a very serious use in terms of the design,

particularly in some smart designs known as smart pointers, where this particular feature

will be used extensively, but will talk about that when the time comes and there are

several other signatures, which I just listed them. Do not spend a lot of effort to

understand or to memorize what these are allowed and these are used occasionally, but

they are very, very occasionally in situation. So, it is just that such copy assignment

operators are possible, but you will primarily use this and in some cases you will use

this.

(Refer Slide Time: 11:53)

So, to sum up here we have looked into copy constructors, where new object is created,

and this new object is initialized with the value of the data members of another object

and the major requirement of copy construction happens for call by value and for

initializing use a defined type data members. Copy constructors are to be provided by the

user, but if the user does not provide a copy constructor then the compiler will provide a

free copy constructor which just as a bit copy. We have discussed about copy assignment

operator which is doing a copy when the object already existing.

So, it can be, it is already existing initialized then it has to be replaced by the members of

the object being copied from, and in copy assignment operator self copy could be a

significant issue and needs to be taken care of and again please keep in mind that this is

not explicitly written in the slide, but please keep in mind that if the user does not

provide a copy assignment operator, but uses it in the program then the compiler will

provide a free copy assignment operator, which again like the free copy constructor will

again just do a bit wise copy without considering what specific requirements the copy

may have.

So, it is always advised that like the constructor, you should also provide the copy

constructor and the copy assignment operator whenever you are designing a class where

copies are possible or where objects are likely to be passed to functions in call by value.

In specific terms, we have also seen here the notions of the deep and shallow copy with

pointers. Please remember, shallow copy will just copy the pointer. So that after a

shallow copy more than one pointer points to the same object and deep copy do not copy

the pointer it copies the pointed object. Therefore, after deep copy the 2 pointers point to

two different copies after possibly this originally same object, but they become different

objects.

So, deep copy and shallow copy will have to be used naturally judiciously. Certainly, if it

is not required, we will not try to do deep copy because it will involve the copying of the

pointed data which may be costly because that will again need copy construction by

recursive logic, but in terms of safety using deep copy is often more safe compared to

using shallow copy.

