
Programming in C++

Prof. Partha Pratim Das

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture – 26

Copy Constructor and Copy Assignment Operator

Welcome to module 14 of Programming in C++. In the last module, we have discussed

about the construction and destruction of objects and combined with that, we have taken

a look in to the lifetime of objects.

We have seen after the construction the object can be used and the construction process

actually ends and the object is considered fully constructed, when the initialization list of

the object has been completely executed, and the constructor body is about to get

executed. Then the object can be used for as long as is required and when the destruction

or the destructor call has happened, then the destruction process starts, but the actual

destruction happens only when the body of the destructor has completed.

We have seen this with couple of examples and we have also seen the construction and

destruction based object lifetime for automatic, static and dynamically allocated objects.

Before we move on to more of object construction in terms of copy construction and

copy assignment operation. Will take a little bit more look in to the object lifetime.

(Refer Slide Time: 01:42)

And then we will primarily focus in this module to discuss on how objects can be copied.

The process of copy, which in simple terms is, if x is a variable and y is another variable

then assigning y to x is making a copy of y into x. Such copies have a lot more of

meaning in terms of C++. So, in this module we will primarily take a look in to that and

specifically discuss notions of shallow and deep copy.

(Refer Slide Time: 02:29)

Consequently, this is what will be our outline, which is as you know can be visible on the

left hand side of the border.

(Refer Slide Time: 02:43)

So, first let us take re-look into the object lifetime. Now, what we want to highlight in

terms of object lifetime here are few things, one we want to see that when an object has a

number of data members, what is the order in which these data members are constructed

or initialized and what is the order in which they are destructed or deinitialized. And

when these data members particularly are of user defined types, that they are objects of

some other class then what happens to the lifetime of the object, which has the data

members and the lifetime of the data member themselves.

So, with that we will start with an example program, which you can see here, it is not a

very meaningful class. It is just a class x and it has two data members they are integer

data members and they are being initialize certain values in the initialization list.

Now, we are interested to find out, what is the order in which they will get initialized. So,

we have done a small trick, while initializing the value instead of just directly putting the

value, that is what you actually want to do is take m 1 and assign it to this data member

instead of doing that we have written a wrapper function, which takes m and returns m.

So, it basically it is input and output are the same, but because this function will get

called when this initialization will happen, we will get to know the order in which this

functions are getting called or the order in which the initialization happens. So, if you

look into this, then you can get to see that the order is first m 1 is initialized and then m 2

is initialized which is what we would expect to happen.

Now, let us look into the right hand side, we have the same set of rapper functions we

have the same initialization. The only difference is in the class, we have the same data

members, but we have just swap the order of the data members and now you can see

between the order of initialization earlier and the order of initialization this time the

order of initialization has changed, that is when m 1 was the first data member followed

by m 2 they were initialized in that order. Now, when we have changed this order of m 1

and m 2, the initialization order also has changed.

From this, we take a very important lesson in terms of the order of initialization of data

members in a class; the lesson is the order depends on the order of data members as they

are listed in the class. The order in which they are listed and not the order in which they

are actually invoked in the initialization list and we will soon show an example to see

what consequence this particular property can have.

(Refer Slide Time: 06:09)

So, let us go to the next slide. Here, we have a simple string class as you have seen

earlier also there is a container which basically is a pointer to character which is suppose

to keep as history and another data member gives the length. So, if I initialize it in the C

style, then we will initialize it with certain initial value of; here we have used a name

Partha. So, we will string duplicate Partha into the str field and keep its length in the len

field and then we can print. So, it will print whatever is the string and its length.

When we write this in C++ in terms of the class, then certainly we will have the same

data members, but we write a constructor and in the constructor initialization, the

initialization list, we string dup the given string s first and then we take the str field that

has been created, that is the string that has been duplicated, we go and compute the

length of that to set the length field and certainly we get the similar set of results when

we execute them. So, this is the example we are talking of. Now, the question is, what if

between these two data members if you swap them, will this program scale what or will

this program have some difficulties. So, let us just try to swap and this is the example

that you can see.

(Refer Slide Time: 07:56)

The only difference from the earlier one is, we have swapped the order of these two data

members. The constructor and the initialization list has not been changed, they are

exactly the same, but just the order of the data members has been swapped and as you

can see here, in this I have executed this in Microsoft Visual Studio, we can see that the

program crashes.

The reason is understandable because as I said earlier that the order of initialization

depends on the order of the data members on the list. So, since len here is given earlier,

this particular initialization happens first and when this happens, the str field. This str

field has not yet been initialized no memory has been allocated in this pointer and no

string has been copied. So, the call to str len actually get what we commonly say garbage

values and therefore, from that we get this kind of an error.

So, len will produce this is the points are highlighted here for your reference and because

of this call to str len with uninitialized values, we will get this kind of an error. So, this is

just to highlight through a simple example that the order of the data member can be

critical and while writing the initialization list, you should be aware of the order in which

the data members are actually created.

(Refer Slide Time: 09:42)

Now, let us look at few more simple examples. These are just initially for illustration and

then we will put this together into building, a little bit of a bigger class so that we can see

the order of lifetime or the order of construction destruction better. So, here we just show

a simple date class. So, this date class has 3 data members; date, month and year. So,

which are basically either numbers or they are enumerated types like Jan, Feb and so on.

So, which are basically sub types of integer we use them to initialize a date in the

constructor and therefore, if you execute this program you will get this kind of an output

where first the date will be constructed as in here, then it will be printed using this print

and finally, it will get destructed. There is nothing more in this example will just use

more of these examples subsequently.

(Refer Slide Time: 10:49)

Now, I show another example for the lifetime, which is point and rectangle classes, so a

point class has two data members the x and y coordinates of a point. It has constructors

which initialize these points and a rectangle is basically a pair of points, where tl stands

for top left and br stands for bottom right, that is a two corner points of a rectangle, if I

specify that, then the rectangle is fully specified.

Now, if I want to initialize if you look carefully then I need actually initialize these two.

So, for rectangle we have a constructor, which specifies four integers, of that the first two

are meant for the x and y coordinate of the top left point the next two are x and y

coordinates of the bottom right point. So, we take the first two and construct the tl

component take the next two to construct the br component and the rectangle gets

constructed fully.

So, if we look at if you try to see the order in which the constructors get called, we will

see that the first this constructor gets called. Why, because these are the two integers

which is tlx and tly, tl is the first data member of rect class. So, naturally this is the first

initialization to happen in the initialization list. So, this initialization means that a point

has to get constructed, which means that for this initialization this particular constructor

will have to get called, this constructor gets called. Accordingly, this particular body of

the constructor prints this output, it says that a point with 0, 2 has been constructed.

Next, the next two integers are taken; the second element in the initialization list is to be

constructed. Again, another point is constructed to the same constructor and you get the

output for that; then there is a print which shows that the rectangle, I am sorry. Then once

that has been done, then the body of the rectangle constructed gets executed. So, you get

this output which says that a rectangle with tl 0, 2 and br 5, 7 has been constructed, and

then you print. So, the print comes in here and finally, the destruction process starts when

the destruction process starts.

At this point, we have already explained that this rect is an automatic object. So, the

destruction will start, when the scope of that automatic object ends, which is the closing

bracket of the block of main. So, what will happen at this? This was the construction

order. So, the destruction order will be exactly the reverse that is a LIFO.

So, the first call will happen to the destructor of the rectangle. So, first this gets executed

and when it comes to the end of the destructor body of rectangle, at that time the

rectangle is ready to be destroyed, which means that now the data members of the

rectangle object has to be destroyed. So, the next one which was constructed just before

this that is the br, this is basically for br that will get destructed. So, for that the

destructor of the br, the destructor of br will get called and you get this output and finally,

the first object that was constructed which is the object tl, the destructor for tl will get

called and that results in the results in the messages that we have.

Now, it is kind of a one function destructor function calling the next and once that

completes then it calls the next destructor function and so on and when all these are over

then the destruction process is over. So, this is just too clearly highlighted to you, as to

what happens when you have data members which are of user define types that is data

members, which are not just built-in the data members, which actually have their

constructors and destructors. So, you will have to remember that they are constructed in

the order in which they are listed in the class and they are destructed in the reverse order

of their construction.

(Refer Slide Time: 15:39)

Let us move on, in the next couple of slides we will just build up to show you a bigger

example. So, in this slide we show two more classes, one is a name class designed to

keep or maintain names of a person. So, it has two different data members; first name

and last name. They are of the type string that we have already discussed. So, we have

included the string class as in the header. So, for these two data members we provide the

parameters to the constructor and they get constructed in the initialization list.

We have another class address which is to keep a house number and three strings; street,

city and pin, which are strings describing the respective data members. So, they will be

constructed in the constructor of address and will be printed subsequently. So, this is

what using the string, now we have a name class which can maintain names of persons

and address class which can maintain address of persons and so on. We are just building

this up to for a bigger example.

(Refer Slide Time: 16:59)

Now, this is the example which we were interested in; let consider a class to represent a

credit card. I am sure all of you have or at least have known, how a credit card can be

described. A credit card has a card number which is typically a 16 character string. It

certainly has embossed in it, the name of the holder, the address of the holder is given

though is not written on the card. A card has an issue date, it has an expiry date and on

the reverse of the card, we have a verification number call the cvv number. So, if you

want to describe a credit card object, then this typically; this is a very minimal

description that we can have for a credit card object.

So, for at the constructor which is here a big list, this is actually the prototype of the

constructor. This is a three lines which give us the string giving the credit card number

then it gives the names; first and second name of the holder. Then it gives the house

number, street name, city, and pin for the address of the holder. Then it gives the issue

date, that is issue and expiry dates. These use the date class that we have defined and

finally, the cvv and we use the initialization list to initialize.

Therefore, if we use this class to create a credit card object for say, Mister Sherlock

Holmes, staying in 221 Baker street, London, then the invocation of the constructor will

look something like this and with that let us take a look into how will the construction-

destruction, how will the lifetime look like .

(Refer Slide Time: 19:01)

So, this is how the object is getting constructed and just for reference, I have put the

definition of the credit class and other classes here, this is just for your reference, but this

is the output this the whole thing is output. So, this is the construction phase, where

naturally if you want to construct, the first field here, is a card number which is nothing,

but a C string. So, there is no constructed to be explicitly called. So, therefore, there is no

output, but the next certainly what will get constructed is the holder.

So, the constructor of name will get called. So, for that then constructor of the name has

two fields, the first name and the second name which are strings. So, first thing that gets

called is the first name string then the second name string and then the construction of

the name object. Then address starts, again the house number is an integer. So, that has

no constructor, but the other three strings will get constructed next, which give you the

street name, the city name and the pin and then the address object gets constructed. Then

subsequently the two data objects get constructed here and here and finally, the credit

card object get constructed.

So, this is just shows and I have intentionally done this kind of indentation to show that

the more indented is a statement is what has been constructed earlier. So, this is the order

in which this will get constructed. So, these two will construct this, these two will finally

give these. These are the separate objects and all of these together will finally construct

the credit card object. Then the credit card can be used which we just show by print and

then the destruction order if you look at and I will leave this as for your study to look at

carefully the order of the destruction is exactly in the reverse order of.

So, if you just read this list, bottom to top that is the order in which the destruction will

happen for this is the objects and that is just for your practice also, I would suggest it is

naturally in my quick description you may not be able to see all of the details here, but

the whole program is given in the presentation and you have or if go through the

presentation and I would suggest that you also try to run it in your system and try to see

that you are getting the same result and get convinced about what is the different lifetime

of objects that you get when you have nested objects this data member like this.

(Refer Slide Time: 22:06)

Now, we will move into discussing a new kind of constructor and the reason I discussed

object lifetime here, is we will see that with this new kind of constructor the lifetime of

objects will get new dimensions to understand. So, we just start by showing a simple

example say, we know complex can be constructed in this way and that will call a

complex constructor like this we have seen the complex class quite often, but suppose I

write it like this what does that mean.

So, just see the difference, here it is written like this, here it is or if I write it like this.

There is a main difference is here, I have specified the parameters of the constructor the

two double numbers one after the other by comma. Whereas, here I have used a complex

object itself to initialize another complex object C 2.

When I try to do this, then I am doing a construction which is a special kind of

construction which is known as the copy construction and a copy constructor looks like

this, this is just a constructor. So, it is complex colon colon complex, only difference

being that it takes another complex object as a parameter and it takes it as a reference

parameter and we are using const in front of this, let us slowly understand why we do all

these.

(Refer Slide Time: 22:53)

Let us look into an example here is the total complex class. So, this is the constructor that

we have seen earlier. These are copy constructor that is will specifically have to look into

this part of the court that it takes a complex object and then it initializes the data

members from the data members of the complex objects. So, the object that you want to

copy from is C - the re data member, re underscore data member is c dot re. So, we take

that and put it to re. Similarly, we take c dot im and put it to im. So, basically what

happens is the new object which is getting constructed by this constructor has identical

values in re and im fields from the object it is copying from.

So, in this context if you look into the construction of a couple of different objects then

naturally the first construction is simply using are parameterized constructor of two

doubles. The second one will use the copy constructor because it takes the C 1 object

which is a complex object and uses the copy constructor to construct C 2. Similarly, the

next one will take C 2 and copy construct to find of to construct C 3 as copies of these.

So, after this construction if you try to print them as we do it here then we finds that all

of them have become identical. They have this identical construction values and in the

print they show identical values and in the destruction also they show identical values.

So, this is how copies can be made of objects very easily to this copy constructor

mechanism.

(Refer Slide Time: 25:56)

Then the question certainly is why we need copy constructors and there are primarily

two reasons that copy constructors are provided or need to be provided in C++. To

understand, first consider the function call mechanism. As we have already seen, when

we talked about better C part of C++, we talked about references; we talked about call by

reference or return by reference mechanism. So, if you just recap those then there are

four things, we can do we can call by reference in which case the actual formal

parameter actually takes the reference to an actual parameter, that is both the formal and

the actual parameter share the same memory location, share the same object.

The same thing happens at the time of return, the value that you return by from the

function and the value that you get from the calling function. Basically, these two objects

are same if you would return by reference whereas, if you do call by value then you need

to make a copy of the actual parameter as a formal parameter, you need to make a copy.

Please, this is what most significant point is.

Now, as long as the objects that we pass or the values that we pass, they were of the

built-in type making this copy was straight forward because it was just making bit copy

of an int or a double or a character and so on. But, when we have user defined objects

then we actually need, given actual parameters. So, this is an actual parameter which is

say an object C and I need a formal parameter say f. So, this f will have to be an object of

the same type and, but it must be different from C because I want to make a copy and the

values of the data members of C, somehow needs to be copied to f. So, the purpose of the

copy constructor is significantly to achieve this process of call by values.

So, if a user defined type does not have or is not provided with copy construction process

if this is not provided with the copy construction then the consequences, the objects of

that class, objects of that user define type cannot be passed as call by value mechanism to

any function. The similar observations will happen if you want to return a value, return

something from a function by value because we will again need copy constructor to copy

the value. The other situation where copy constructor is needed is for initializing the data

members.

You have already seen that we have been copying one value into another regularly in the

previous examples of object lifetime, but the copied values were typically where

whatever data members we had for construction they were typically built-in types, but if

I have to copy a value of a user define type as a data member then I will again faced with

the same situation as the call by value situation. So, initializing the data members of

UDT will also need the existence of a copy constructor without that a data member of

that corresponding type cannot be defined.

We have just seen; we have revisited the object lifetime and we have specifically taken a

deep look into the different object lifetime scenarios, particularly with user define types

and discussed the issue of ordering of data members and their consequence on the object

lifetime and we have just got introduced to the copy constructor.

