
Programming in C++

Prof. Partha Pratim Das

Department of Computer Science and Engineering Programming in C++

Indian Institute of Technology, Kharagpur

Lecture – 14

Default Parameters and Function Overloading (Contd.)

Welcome to Module 8 of Programming in C++. We have already discussed default

parameters and we have discussed function overloading, the basic requirement of

function overloading and how functions can be overloaded, that is, multiple functions

can be there with the same name in C++. But, as long as they differ by their parameter

type, number and types of parameters. And, we have observed that functions cannot be

overloaded with the return type.

(Refer Slide Time: 00:54).

Now, we would go next to this. Give a glimpse of the overload resolution. Overload

resolution is a process by which the compiler decides amongst multiple candidate

functions, multiple candidate definitions of a overloaded function that exist. The

compiler has to decide which particular one it should bind to. This is overload resolution,

is a little bit advanced topic in function overloading. So, if you find it little difficult to

handle at this stage, you may keep it at a (Refer Time: 01:35) and come back to it later

when we discuss about the depths of overloading in C++, later on.

So, here we would just try to give you a basic idea that how to resolve the overloaded

functions. And, I am using an example here with just one parameter to keep things

simple. These are the basic steps which are to identify a set of candidate functions; that

is, you first scan all functions that are been defined. Certainly, a function can be called,

provided it has already been defined. So, the compiler scans all definitions that have

been received so far, before this call and forms a set of candidate functions.

Then, it scans through the set of candidate functions that is this point scans to the set of

candidate function to find a set of viable functions that match the number of parameters

and so on. And then, it tries to do the most difficult part, which is, decides on what is the

best viable function. And, for doing that it makes use of the following strategies. And,

please note that the order is important here. That is, it applies the strategies, not

arbitrarily. But, in this order of exact match, promotions, standard type conversion and

user defined type conversion.

Now, certainly we cannot explain all of this right here. So, we will come back to it even

at a much later stage. For now, I will just show you a simple example of how the

resolution is done using exact match and talk a little bit about what is a scope of exact

matching and what is the scope of promotion.

(Refer Slide Time: 03:28)

So, let us take an example. Let us take an example of overload resolution with one

parameter. Let us assume; concentrate on the list on top here. Let us concentrate on this

list. Let us assume that our target actually is to find out for this particular call of a

function by name f and parameter 5.6 to decide, which of the signatures this function

corresponds.

That is, if I have said f 5.6, if the user has said that then which particular function has the

user intended to call. So, in the context we are taking that before this call of f 5.6 has

been encountered 8 different function headers or function definition has been seen by the

compiler. And, just to refer to them conveniently we have called them as F1 to F8. Now,

how do you decide from? So, certainly f call of f 5.6 has to match exactly with one of

them, so that I can say that at particular function is getting called. So, what are the steps

in resolution? so, if you look at here, if you use steps in resolutions, first you form the

candidate function.

In this case, the simple way to form the candidate function is to look for the name and

find functions, which has a matching name. Here, we do not have any other factors. So,

we will just go by name; the name is f here. So, let me look at what are the functions

which have name f; this function, this function, this function, this function. So F2, F3,

F6, F8. F2, F3, F6 and F8 are my candidate function.

Certainly, if I say f 5.6, I could not have meant this function g, even though g has one

parameter, even though g has a type parameter type which is double, which is the type of

5.6. But, certainly I could not have meant that because my names are different. So, my

candidate functions give me these four functions. So, now, I focus only on this candidate

function.

Now from this, based on this candidate function next screening that I do is based on the

number of parameters. So, out of these candidate functions, I see what are the number of

parameters. So, if I look at F2, this is 0; if I look at F3, it is 1; if I look at F6, it is 2 or 1

and if I look at this, this is 2. So, these are the required number of parameters for calling

the respective candidate functions. And, how many parameters we have here? 5.6 - one

parameter.

Second, immediately say that this is ruled out. I cannot call F2 by f 5.6. I cannot

similarly call this because it requires two parameters. So, my choice voice down to these

two; it is either F3 or F6; F3 OR F6. So, I call them the set of viable functions.

Now between F3 and F6, I have to decide which one to use. So, I can think of that I am

actually calling the function F3, which needs a int parameter. So, if I have to call

function F3, then what is to happen? It has to happen that this parameter actually is a

double parameter; 5.6 is a double. So, if have to call it F3, then this double has to get

converted to int; which means, some truncation is, have it to happen. And actually the

call will turn out to be F5. And then, I will be able to call it. Otherwise, I can call F6,

where in it is f 5.6 as a first parameter, second parameter is defaulted. So, the second is;

so, this could be the call. So, either this is the call or this is the call.

Now, the exact match say that I will choose this because here the type of the parameter,

formal parameter and the type of the actual parameter, these two match. Both of them are

double. Whereas between this and this, I need to convert one is double. I need to convert,

actually truncate that to main int. So, that is not a preferred one. So the exact match

strategy, by using the type double tells me that my dissolved function is F6. So, once I

am done, the compiler will resolve that you have called this function.

This is the process of overload resolution. And, it is a, quite a complex process because

so many different types could be involved. So, many different cases can happen. And, so

while somebody who writes a compiler needs to know it very thoroughly. As a

programmer, it is good to have some idea because you may have meant certain overload

to be used. If the compiler did uses a different kind of overload, then you are using a

wrong function at a right place. So, just let us take a quick look into some of these

strategies. Exact match is the first one. That just to recap, these are the different ways to;

these are the different ways to resolve the best function, exact match promotion and so

on. So, you just are looking at what is a exact match.

(Refer Slide Time: 09:51).

So, exact match is; these are different cases of exact match. That is, you can convert an

lvalue to an rvalue; that is, if you are using a variable just to a, in case you are not

familiar with this terms, l value, l value is left value or basically the value of the variable.

And rvalue is, I am sorry this is not, this is wrong, address of a variable. And, rvalue is a

value; is a right value. So, it is like if I am writing a assign b, then what I am interested in

b is its value of the b. and, what I am interested in a is the location where we a exist

where I can go and keep the value of b. So, here I am interested in the lvalue and here I

am interested in the rvalue.

So, you may need to convert from lvalue to rvalue. The other possibilities are like this,

where you convert and you are trying to pass an array, but the actual function needed a

pointer. You can convert arrays (Refer Time: 11:17) to pointer. You can convert function

to pointer. For example, this is the function pointer. We have seen what function pointers

are. This is a function that I am trying to resolve. Which, second parameter is a function

pointer; this particular function pointer. But, what I have passed is actually a function. I

did not pass a pointer. So, I should have passed ampersand g, which is a pointer.

But, I have just passed the function name directly. So, this conversion is allowed as a

match. And, I can convert pointers to constant pointers. So, these are different cases of

exact match that the overload resolution uses. Besides that, you could take promotions

and conversions.

(Refer Slide Time: 12:05)

.

For example, I can convert character to integer, enum to integer, bool to integer. Or, I can

convert between other kinds of integral conversions float to double, double to float; all of

that various kinds, various types of a pointers can be converted. So, all these promotions

and conversions are also used for overload resolution. This is just to give you the

glimpse. We will come back to this much later when we talk about variety of other

overloading that are possible in C++. So, this is just to give you a basic idea.

(Refer Slide Time: 12:43).

Now, I will end. Before I end, I will also show that a overload resolution may fail in

different cases. And, you will have to be careful about those. For example, here look at

these three functions; the Function 1 has one float, Function 2 has two parameters,

Function 2 also has two parameters with one defaulted. And, this is the use that you are

trying to do. So, if you try to resolve at this first CALL-1, which is taking two

parameters, then what are your candidates are? All three functions are your candidates;

Function 1, 2, 3 because the name matches.

Now, what is viable? Viable are you looking at the number of parameters. It is Function 2

and Function 3. Now between these two, Function 2 and function 3, what is the best one?

It is difficult to say what is the best one because p is a float here, which matches the first

parameter type of both these functions. If we look into the second, which is s, is int,

which matches the second parameter type of both these functions. So, it is not possible

for you to resolve between function 2 and function 3. So, if we have such a call, then the

compiler will come back and tell you that it is ambiguous. The compiler will say, “I am

unconfused, I do not know what to do”. So, these are different cases, where resolution

overload resolution will fail.

The second one is another case, where we are just using one parameter for function. So,

naturally your candidates again are all three. But, your viable one set, certainly two does

not remain viable because here you are using just one parameter. Function 2 would have

needed two parameters. So, both of these become viable. But again, if both are these are

viable, you cannot easily resolve between them because you would, this could call this

by a conversion, by a promotion of int to float; we just seen. Or, it could call 3 by

assuming this is defaulted.

And, this is another promotion again from int to float. So, both of them has some, same

kind of, you know, efforts, same kind of complexity. And therefore, this will result in

ambiguity. So, whenever you write overloaded functions, you will have to be careful that

such cases are not there in your code or if the compiler refuses to compile this and says

that there is an ambiguity, please look for some of these situations that may exist in your

code right now.

(Refer Slide Time: 15:40)

.

Now, we have looked at default parameters and we have looked at function overloading.

Now, you can just observe that the reason we have put them together in the same module

is the fact that basically they are; at the core they are basically the same feature, except

for maintaining that default parameter value, in case of the default parameters. The

whole mechanism in the language is the same. So, if we look at these two code side by

side from left and right columns here and if you look at the main function, the main

function here is identical. It has, this is exactly the same code on both of these. What,

here we have one function with two parameters defaulted and here we have three

functions overloaded.

Now in terms of call, all these three calls resolve to the same function. Except that, it

depends on how many parameters you are using. And here, these resolve to the

respective functions, depending on this is the simple resolution; because in each one of

these case, as you can figure out there only be, all three will be in the candidate set. And,

in every case there will be only one function in the viable set. So, there is nothing to look

for.

So, basically what you can think of that if you default a set of, the set of parameters in

the function, then you always are creating two choices for a default parameter that either

it may exist there in the call site or it may not exist in the call site. Depending on that,

you are as if generating two different signatures for the same function. So, what I am

saying is if I; this means, I have, once we, once I write this function; that means, that I

can call int with int int, which basically is this overload. It also means that I can skip the

second parameter. So, I can call it with just one int, which is this overload.

It also means that I may not specify any parameter. Just call it without parameter, which

is this overload. So underline, default parameter is basically nothing other than a special

case of function overloading. With the added feature that it also carries the overload

value, which is the initial, the value of the parameter along with it. Otherwise, depending

on the function site, all site like this, all like this, which function will be bound is again a

overload resolution problem.

(Refer Slide Time: 18:31)

.

So, now naturally you can use default parameters with function overloading. Some of the

earlier examples, I have already used that. But, here I am just explicitly wanted to

discuss it that I can, between the overloaded functions themselves, some parameters

could be default. But, as long as you can resolve the whole set of functions with the

default parameters from the call site, these usages are fine.

So, here is an example again here. So, the area function, we had this function, we had

seen earlier. So, here both of them have two parameters. They are different types. And, in

this case one parameter is defaulted. So, if we make this call, since, only this function

can be called with one parameter. This will get resolved here. If we call this, then z is of

type double and y is of type int. So, you will not be able to call the first function. We will

call the second function because the first parameter matches as double. And, it is easier

to convert an int to a double than converting a double to a int because if you convert a

double to a int, you lose information.

If you convert int to double, then you do not lose information. So, that is the promotion

strategy which will tell you that the bindings will happen as this will bind here and this

will bind here. That is what we have shown at this point. So, bottom line is what we are

trying to illustrate is default parameters and function overloading can be mixed together

as long as the whole thing can be resolved. And, of course it can fail.

(Refer Slide Time: 20:25)

.

For example, this is, again in some way we had seen this earlier. But again, just to

specifically note that here are three functions which are overloaded; one this is a zero

parameter, this is one parameter and this is two parameters. So, given that these three

calls are certainly resolvable. It will, that in every case of the viable function set will

have only one function each; will be able to do that. But, the moment you put a default

parameter to one of this overloaded functions, you have a problem because now this

function can have one parameter or zero parameter.

So, when I write a function call with zero parameter, your viable set will have both of

these in place. And, certainly there are no parameters at all. There is no match that you

can try out because if there is no parameter, then what type you are going to match

between the type of a actual parameter and the type of the formal parameter. And

therefore, the compiler cannot resolve. And, this is again from a typical compiler. This is

the kind of error message that you will get. And, just see what the compiler is saying; is

ambiguous call to overloaded function. And, it says that it cannot resolve between these

two functions.

So, while you will use default parameters with overload, will have to remember that you

cannot only look the overloading, nor you can just look at the default parameter. You

have to look at the width default parameters, what are the different overloads that are

getting created and whether those different overloads, whether they can be actually

resolved by the outline of the mechanism that we have explained.

(Refer Slide Time: 22:17)

.

So, this is; these are the features. So, at the end I would just like to sum up that in this

module we have tried to address a major aspect of C++ language that is a function

overloading. First, we have taken in look at the notion of default parameters, which later

on we have explained. It is a special case of function overloading. Default parameters

make it very easy to write functions with large number of parameters to provide their

default values and make the function libraries easier to use. And, function overloading is

another feature which allows us to write multiple functions with the same function name,

as long as their parameter types differ.

So, we had looked into variety of nuances in this regard. And, we have talked of basic

static polymorphism. And most importantly, we have also discussed the mechanism by

which I mean, we have discussed the outline for the mechanism by which different

functions can be resolved for the overload.

With this we will end this module. And, in the next one we will extend the same concept.

And, see that similar overloading concept can be applied in case of operators also in

C++, which will be known as operator overloading.

