
Programming in C++

Prof. Partha Prathim Das

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture – 11

Reference and Pointer (Contd.)

Welcome to module 7 in Programming in C++. We have discussed the basic concept of

reference, and using that we have introduced the notion of call by reference. And, we

have shown that how certain functions like swapping can be written in a better way in

C++ by using the call by reference mechanism. We have also discussed that a reference

parameter can be a general input/output parameter for a function. Therefore, if I do not

want the function to change the formal parameter and make subsequent changes to the

consequent changes to the actual parameter, then we also have the option of defining a

reference parameter to be a const parameter by which it can only be initialized by the

actual parameter. But, any changes made to that will not be allowed by the compiler. We

will now next continue and talk about the other side of the function mechanisms.

(Refer slide Time: 01:29)

In C, we use the mechanism to get a value back from a function; is called return by value

mechanism. That is, as parameters are copied from actual to formal, the return value is

also copied from the return value expression, which we write in the return statement back

to wherever we are assigning that function value. So, in contrast in C++ it is possible to

return a value by reference. Let us see what we are saying.

So, first let us focus on the two sides. On left, we have return by value; on right, we have

return by reference. So, on left we have a function which is a typical c return form in

C++. It is only using a call by reference. And on right, please note that after the return

type we have the reference symbol. So, if it says that we are returning the reference of

the return expression. And then, the use is similar. Here, we invoke this function; here we

again invoke this function. And to keep the result of the function, and this is primarily for

the purpose of illustrating the effect to you.

I have used another reference variable b. So, b will keep the reference to the value that is

returned. If you look into the return by value part that is on this side, you will need to

understand that this reference b must be a constant. Why should this be a constant

because if you refer to the equal; the pitfalls of reference definition, we had shown that if

I have an expression j plus k, I cannot create a reference to that because j plus k is

computed in a temporary.

Now, here what do I have on the right hand side? I have a function invocation. What is a

function invocation? It is an expression. So, I cannot write a difference to that. I can have

to write a constant reference to it, which is the temporary location which will be

preserved through this reference. On this, writing the constant is just for the sake of

uniformity. It is not actually required. You will understand that once you understand the

mechanism.

Let us look at now the output. So, the first output that will come the cout which is here,

which prints a, and its address. Next is within the function. The function has been called.

After this print, the function has been called here. So, next is this cout, which is this

output where you print x. It is a call by reference. So as expected a, and x have the same

address.

Finally, you look at this third output which will come from main, after the function has

returned. And, what does a function do? Function simply returns a value that you had

passed it. So, it is expected to return the same value. So, b returns the same value. But, if

you print address of b here, it is different from the address of a, or address of x. And, this

is expected; because it is returning by value. So, what it is returning is a copy of x; which

is in a temporary, and I have hold that temporary. I have held that temporary is a part of

b; as a reference in b.

(Refer slide Time: 05:52)

Think about the similar on the reference side. Here, we are looking at call by, return by

reference. The first output comes from here which is, a and its address. Second is from

the function which is x and its address. Call by reference; they have to be identical. they

are indeed identical. The third output comes from here after the function has returned.

You see that it is not only b is same, this address of b is also same; because what has

actually been returned, what has been returned is not the value of x.

But, what has been returned is a reference that is the address of x itself; the reference of

x, which is an alias of x. So, b now becomes an alias of what was x. And, what was x? x

was an alias of a. So, b has in this process become an alias of a. So, that is the difference

between return by value and return by reference. Again if you do return by reference,

then it will show some interesting and tricky issues. But if you do return by reference,

then again we can avoid copying of large structures if that is what we want to return. So,

in many places you may want to return by reference.

(Refer slide Time: 07:22)

Now as I said, return by reference can get tricky at times. Look at here. There is a

function which takes a call, takes a parameter by reference and returns that same

parameter by reference. And, look at this line and first we will have to believe your eyes

that what you are seeing is correct program. You have never seen a function invocation

occurring on the left hand side of an assignment. Function invocation is always on the

right hand side. So, here this is valid; because what is the function returning? The

function is actually returning an alias. It is actually returning an address; it is actually

returning a variable. So, if I say that I am making an assignment free to it, then I am

actually making a assignment to that alias.

So, let us see what it means. Let us look at the output. We have the outputs here. So, this

is the cout, the function was called at this point with a, x is 10, which is a is 10. So, it

returned the same x. So, b has become 10. So, when I look at this output, it is a is 10, b is

10. No surprise. I call it once more here. And, assign 3 to the return reference. So, what

will it mean? if I am calling it with a, then a and x become alias. x is an alias of a. I am

returning by reference. So, what I returned is an alias of x, which has to be an alias of a.

So, what I have got here as return is actually an alias of a. So, you can always make an

assignment 3 to it. Where will that assignment happen? It is an alias of a. So, assignment

will happen in a. So, check a out of this. a has become 3. So, this is what gets possible if

you do a return by reference.

Now, we will subsequently as we go forward, to get to later features, we will show how

this kind of a tricky thing and little bit confusing thing can be used for advantage in some

places in the program. I am not advising that you write this kind of code very frequently.

But, there are places where this can be used to advantage in a good way.

(Refer slide Time: 10:44)

And, using this on the right column which you had not seen so far, I show that if you are

not skilled, you might shoot at your foot in trying to do this. Look at this code, which is

very similar to what the earlier code was. The only difference being that it now takes the

parameter x, which is naturally an alias of a, because it is call by reference and it has a

local variable t and it initializes t with x and then increments t.

And then, look at here, earlier it was returning x. Now, it returns t which is this local

variable as a reference. And, you did a same thing here. The first two lines are at similar.

They produce a same output. So, there is nothing to look at. Look at this line. You have

done this here. So, if you do this and try to expect that, some change will happen to a, or

something like that. You will be surprised that nothing will happen; because what you

have done? You have actually returned a local variable. So, what gets returned here is a

reference to the local variable t. And that is very risky; because once you have returned

the reference, the function call is over. So, the local variable has disappeared, but your

reference is still alive. So, your reference says that I have the variable. The function call

has terminated. So, it actually does not exist. This variable t no more exists, that is dead.

But, you hold a reference to that. So, the results of this kind of program could be very

unpredictable.

So, the bottom line prescription is if you are using return by reference, never return a

local variable. If you are returning by reference, always return a variable which is

available, which should logically be live after the function call has ended. So, those

variables could be global, those variables as we will see could be static members, those

could be the parameters that you got as alias in the formal parameter, those could be

dynamically allocated values and so on. But, not the automatic local variables that a

function has because that can get you into real difficulty and these are bugs which are

very difficult to detect; because you will not see anything in the code. On the code, it

looks everything clean and simple. But, still your results will become unpredictable.

(Refer slide Time: 13:32)

But now, finally as we have seen through this module, reference is talking about an alias

of a variable it is a mechanism which allows you to change the value of a variable

without actually taking the name of the variable. So, in that way it has got lot of

similarity and differences with the pointers.

So, I will just summarize this difference in these two columns. So, between the pointers

and references, both refer to addresses. Pointers refer to address; reference also refers to

an address. So, they are similar to that extent, but they differ in multiple ways. For

example, look at the next point. Pointers can point to null; I can assign a pointer to null.

What it means? Semantically, it means that I am not pointing anywhere. It has no pointed

data that I carry. But, reference cannot be null; because it is an alias. It is just an alias. So,

it has to have a variable to effect. So, that is a basic difference.

Since pointer points to different other data, unless a pointer is constant, I can actually

change the data that it is pointing to. So, the example clearly shows that you can do that.

If p was initially pointing to a, then it at some point statements, it can point to b. But, an

reference; for a reference, what you are referring to is fixed by the definition; because it

is an alternate name for a variable. So, certainly I cannot change that reference and make

the name different.

For example, if we just look into, if we just look into this line, if we just look into, if you

are trying to do like this, then you will not be able to achieve that if you write it as

ampersand b assigned c, thinking that you will change the reference of b to from a to c.

You will not able to do that because a moment you write ampersand b. Since, it is an

alias for a ampersand b will be understood as ampersand a because this is an alias. So,

whatever you write to as b is what should apply to a, because this is an alias of a. And

then, ampersand a is a address of a; ampersand is the address operator.

So, what do you saying that you trying to assign c to the address of a, which is the

meaningless thing. So, you can try in all possibilities. For example, if you try to say

okay, am, I would like to change the reference by putting c to b, but then b is a. So, if

you try to assign c to b, you are basically assigning c to a. There is no way that the

language does not give you any mechanism, any operator to do anything with the

reference. You can only refer. And, whatever you do actually is interpreted in terms of

the data that is referred, the referent. So, that is a basic difference.

For pointers, since it is possible that I am not pointing anywhere. Before using a pointer,

we need to check for null. Reference does not need that because it is, if it exists, then it is

alias of something or it does not exist. So, it makes the code much easier to write. You do

not have to bother about that and certainly it makes it faster in that sense because those

checks are not required.

Finally, if you look into exactly if both pointers and references are addresses, and exactly

what is the difference? The difference is not in the empowerment, not in terms of what

you get for reference. The difference is in terms of what you do not get for reference. If

you have a pointer variable, then you are given with a number of operators that you can

operate with that variable. You can actually use that address as a value and do different

things. You can add an integer to it and advance a pointer. You can take two pointer

values and make a difference and see how many elements exist between these two

pointers in an array.

So, all these operators are given to you, by which you can change the pointer in whatever

way you want; which makes pointer so powerful. In reference, also the address is stored.

But, there is no way that you can catch hold of that address. You cannot hold that

address. There is no operation that is given on the reference. Any operation that you try

to do, actually boils down to operating on the referred object or the referent. So, that is

the basic difference.

And, in the way C++ is designed, both pointers and references have their own respective

place. It is not possible to do away with pointers and reference really had a value, but

there are languages where you do not have both these mechanisms. So, it is good to

understand. Particularly, if some you know java you would know that Java has a

reference, does not have a pointer. And, I am just raising this point because I want you to

note that the reference in java is not like the reference in C++. So, if you thought that let

me have more clarification in the concept of reference and read the favorite java book,

then you will only get more utterly confused. And, you will get. So, there is no real

parallel of the reference of java in C++, but it is mostly similar to constant pointer. What

you have in java is a reference is actually a pointer, but it is a constant pointer that you

cannot change it. But, it is not. It is neither fully a pointer nor fully a reference in C++.

And, there are languages which do not; like c it does not have reference.

There are languages which do not have pointers and so on. In C++ we have both. So, we

have a big responsibility to decide in a given context, whether we need to use the pointer

or we need to use a reference. And as we go along, different features and different

programming examples will keep on highlighting that the choice has to be judicious and

right for you to become an efficient C++ programmer.

So in the module, in this module 7, we have introduced the concept of reference in C++

and we have studied the difference between call by value and call by reference. We have

also introduced the concept of return by reference and studied the difference between the

two mechanisms. We have shown some interesting pitfalls, tricks, tricky situations that

may arise out of this and we have discussed about the differences between references and

pointers.

