
Programming in C++

Prof. Partha Pratim Das

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture – 10

Reference and Pointer

Welcome to module 7 of programming in C++. We will continue to discuss the

procedural extension of C into C++. We have introduced that in module 6 and discussed

the two basic concepts of cv-qualifier, constant and volatiles qualifier and the use of

inline functions.

(Refer slide Time: 01:21)

In this module, we will introduce another concept called reference. This concept of

reference is a closely related, but is very different from the concept of pointer. So, we

will also; as we go through the module, we will also try to compare and contrast between

the reference and the pointer. So, their objective is to understand reference and

understand this contrast.

(Refer slide Time: 01:29)

These are the different specific topics that we will go through. A reference is like an alias

or a synonym for an existing variable. So, alias is like what we have in terms of our own

names. We have some given name. We have some pet names and we can be referred,

called it by either of the names. So, here reference variable also has that similar purpose.

So, i is a variable which is declared here. It is initialized to 15 and in this context we

have a variable i, which is defined. It has an initial value 15. Now, I define another

variable and particularly look into this use of the ampersand symbol here. We define a

variable j and initialize it with i. Such a variable j is called a reference to i or a reference

variable for i.

So, this reference variable is actually an alternate name and alias name for i. So, if I look

into the memory, both i and j will actually represent the same memory location. So, if i

happens to have a memory address 200, as I see, show here below if this is the address of

i and its content is 15, the address of j will also be, this will also be 200 as of i. So, it is

immaterial. After this, this particular reference j has been introduced it is immaterial as to

whether I refer i as i or I refer i as j. That is the basic concept of a reference.

(Refer slide Time: 03:40)

So, let us concentrate on a small program to understand the behavior of reference. In this

program, I will show you there is a variable a and b is set as a reference of a. Then in the

next two output statements, cout, we first print the value of a and b. we can see the

output here; the 10 and 10; because a is 10 and b is a alias of a. So, if I print b, also I will

print 10. And in the second line of the cout, we print that is the line here. We print the

address of a, and we print the address of b. These are the addresses this line being

printed. We can again check that they are identical addresses. That is they indeed are the

same variable just that they have two different names.

So, let us try to change the value of the variable. So, here we increment a, and then

output it again. If we increment a, it will become 11, so you can see here that a, has

become 11. And b, even though now operation was done with b, b also has become

eleven. And, you can do it other way. If you increment b, then b becomes 12. And a, the

variable to which b is a reference has also become 12. That is, they are very strongly

coupled together and any one can be used for the purpose of the other.

(Refer slide Time: 05:36)

So, this is the basic motion. Now, certainly if you try to do this you will have to be

careful that there are certain very typical pitfalls that you can get yourself into. So, three

common pitfalls I illustrate here; that could be more. That is, if we just try to define a

reference, but without initializing it with a variable. Then, the compiler will give you an

error because a reference is an alias for some other variable. So, unless you define a

variable along with it, initialize a variable along with it, there is no referent to refer to.

Therefore, it is wrong.

So, if you just see on the table, on the left I show the erroneous declaration and on the

right most I show the corresponding correct version, and you can understand the reason

as given. If I look into the next one, that is, if I look in here, then you are trying to do a

reference to a constant value. This is also is an error because a constant value is just a

value. It does not have an address to reside.

So, you cannot have reference to a value, but you can have a constant reference to a

value; because it is a constant value. So, the reference also will have to be a constant one.

Otherwise, you can you can think of the danger that will happen; is this is related to the

dangerous as we showed in conciseness. That if I, if this were correct, suppose this were

correct, then j is 5.

Now, what will happen if I do plus plus j? Whatever it is referring to will get

incremented. So, this will become; so, a constant 5 will become a constant 6, which is

not possible. So, it has to a defined as const, so that you cannot make any changes to it.

Similarly, in the next one if you look in here I have expression j plus k. and, I am trying

to create a reference to that. But, the expression again does not have an address. The

computation of j plus k is stored only as a temporary location and those temporary

locations are not retained. So, again I cannot create a reference to that. If I want to have a

reference, that reference will have to be a constant, which will refer to the value of j plus

k as computed as the value of the reference.

So, it will not be; you will not be able to change that because the expression j plus k

cannot be changed. So, if I make; if we allow a reference, then we would be able to

change that; which is not semantically valid, if the reference is being made to an

expression. So, all that you can say that. At this point of time, j plus k had some value;

which is treated as a constant. And, I have reference to that. So, all those reference will

have to be constant. There could be more pitfalls, but these are the common one. So, I

just choose to discuss them.

(Refer slide Time: 08:48)

Now, why are we doing this? So, let me introduce a totally new concept of passing

parameters to functions. We know how to pass parameters to function from c. It is called

call by value. Just for a quick recap, the function as defined has formal parameters. When

it is called, I have actual parameters. They correspond in the order of position and at the

time of call, each actual parameter’s value is copied to the formal parameter and then

function is called. So, when the call is done, the function is in call. Actual parameters

reside in some memory corresponding formal parameters reside in distinctly different

memory. In contrast, we can do what is known as call by reference.

So, I would like you to focus on this particular line. To a trying, we have given a function

header. Function under param test is a prototype. Look at this first parameter where we

write the parameter name prefixed with ampersand, which is the notation for reference.

Such a parameter is called a reference parameter. I have also another parameter c in that

function, which is the typical value parameter and we will follow the call by value rules.

Now, let us look into this part of use. So, use that and we choose to have one variable a,

and call the function. That is, as actual parameter we pass a in place of both the formal

parameters. Then, this is the definition of the function; where given the two parameters,

we just print their value and we just print their addresses. Now, let us look into the

output. So, if I, if we do this, then the first output will come from this slide before the

function call, which is this output, which tells me a is at this location. And, this is the

address. The second output will come from this cout, which prints b and gives the b's

address.

Look at something very interesting. The address of b is exactly same as address of a,

something that we do not expect in a call by value mechanism. And, to just show that

what call by value would have done, you would look at the third output line c out and the

corresponding output here of the parameter c. And, you do find that even though c also

has the same value as of a, which it should, the address of c is different. So, this clearly

show that between the two parameters b and c, c is following the original call by value

rule by which is just the value of a which is copied to c. a and c continue to exist in two

different memory locations, whereas, b has basically become a different name for a. It

has become an alias for a.

These symptoms as we have just seen at the symptoms of alias that when I have two

variables differently named, but they enjoy the same memory location and hence the

same value. So, that is a reference variable. So when we use parameters, reference

variables in parameters, we call them as call by reference mechanism. So, in call by

reference the actual parameter and the formal parameter will have different names in the

caller and the callee, but they will have the same memory location. So, this is the new

feature that C++ allows us to do. Here, the all that I said are written at the bottom part of

the slide. You can just read that.

(Refer slide Time: 13:15)

Now, we will just preside for a while. We have just learnt, what is call by reference

mechanism. But, we still, you will still wonder as to why we are trying to do this. So, to

appreciate why we are trying to do this, I take an example from C. And, this is one

example which every one of you, who have done little bit of C would know I am trying

to write a swap function. It will, which will take two variables a, and b and try to swap

them. So, this is what we are focusing on. This is a signature.

If I write this function, if I write this code I am calling swap here and this print out at to

show what is the value of a and b. So, this is a first print which comes from this

particular printf; which shows that a, and b to swap have values 10 and 15, as they are

initialized. Then, I go to swap. So, c and d becomes 10 and 15, the code of swap swaps

them and back, I print again. But, unfortunately the values, actual parameters have not

been swapped. So, the swap did not work and this is to be expected. Because what is the

mechanism? The mechanism is call by value; which means that when I have call the

function swap, the function has taken the value of a copied it to c, taken value of b

copied it to d. And then, the function has done whatever it had to do. It had swapped c

and d. But, these c and d have different locations than a, and b. So, nothing has happened

to a, and b. They are well protected as actual parameters. So, when the function comes

back a, and b are as same. They have not been swapped. So, swapping does not work this

way.

So, we have learnt in C++, in C we cannot write the swap this way. So, what do I have to

do? I have to do some tricking around; some tricks. So, what trick do we do? The trick

that we try to do is define swap in this way. I have mentioned this as called by address;

call by address is not a very formally accepted name. It is actually called by value, but

the only difference is that here the parameter that we pass is a pointed type parameter.

So, we say instead of swapping two integers, now we will swap two pointers to integers.

Therefore, this code is also written with the pointers where, and since these are the

pointers. Whenever I have to refer to the first, I have to it star x now and the second by

star y and we will do that. So, since these are pointers if I have to call them at this slide,

the two actual parameters a, and b will have to be passed as the address of a, and address

of b. So, we pass the two addresses.

Now, what is happening is x. If I look at, x is a pointer to a. y is a pointer to b. Now, what

it is doing? It is trying to swap the value of start x and start y. It is not changing the value

of x and y. It is not swapping these. It is swapping the values of star x and star y. What is

star x? Star x is actually a. If x is the address of a, then star x is actually a. So, when I

swap star x and similarly star y, it is actually b. So, when I swap star x with star y, I am

actually swapping a with b.

So, what I am doing is basically since call by value will not allow me to make changes to

the actual parameter, I am sending their addresses out and remotely I am allowing the

swap function to use the address to actually refer to the actual parameters, and then make

the change. So, in a way I am breaking the rule of call by value because without that I

cannot bring the changes back.

So, here we will have; we see that. Since we are not being able to swap the values

directly, we use the call by address kind of mechanism, where we pass the addresses and

access those values through those addresses. Certainly, it is kinds of a back door to get

achieve the result. And, why are we doing this? What is the fundamental symptom for

which we have to do this? Swap may be one specific instance. The symptom is if we do

call by value, then the actual parameter is copied to the formal parameter. So, whatever

you do in the function with the formal parameter, those effects will never come back to

the actual parameter. This is what we wanted. But, in swap we need the changes in the

formal parameter to come back to the actual parameter. Only then, swap can happen. If I

am swapping a, and b, unless a can change and unless b can change, swap will not

happen.

So to generalize, call by value allows us to have only input kind of parameters; whether

values can go from the caller function to the called function. But, call by value does not

allow me to do output kind of parameter; that is, I cannot compute a value in the function

and get it back to the parameter. So, as such function returns only one value. So, if I want

a function where from which I need more than one output, I have no mechanism, straight

mechanism in C. Call by value fails. So, the only other mechanism is to use the addresses

and do it in a roundabout way.

Now, let us see. Now, let us try to combine the two factors we have talked up. One, we

have introduced the concept of reference, call by reference and we have talked about the

difficulty of having multiple output from a function, from a C function. So, let us look at

particularly in the swap example again. Now, let us. On the left hand side, we have the

call by value example. The example that we saw is actually wrong because it cannot

change because it should not change. This is the call by value prototype.

Now, here in C++ all the only change that we have made is instead of having call by

reference, call by value. We are now saying that we have two parameters, which are

called by reference. That is the parameters are not usual parameters. They are reference

parameters. And, now you write the whole thing with the reference parameter. Rest of it,

rest of the code between what you see in the C and what you see in C++ are same. These

are the just two places where changes are made.

What is the effect? If it is a call by reference, then when this particular call happens, the

actual parameter a, and the formal parameter x here, they are, they enjoy the same

location; x is another name for a, y is another name for b. So, if I interchange x and y it is

same as interchanging a, and b. So, I can get the whole effect in my code. So, what I gain

by doing this? Several things; one is I do not need to take the back door. If I want a

parameter to be input, I make a call by value; if I want the parameter to be output as well,

then I will do a call by reference because then the changes done in that formal parameter

within the function will also be available in the actual parameters; because the actual

parameter and the formal corresponding formal parameter enjoys the same address.

So, that is the advantage of using reference and doing the call by reference mechanism in

C++. It certainly makes the code much cleaner. It makes it more easy and reliable to

write programs. And, as we will see later on, it also often saves a lot of effort because in

call by value you have to make a copy of that value. Now, as long as your value is an

integer, may be making a copy is not costly. But, think of, if you are, if the parameter that

you are passing is possibly a structure which may have say 10 kilo byte of size having

200 different members, 200 different components, then copying that itself may be a lot of

cost. So, you would not like to incur that cost. You could just use reference.

There is a side effect of using reference parameter. Now, said that if we do a reference

parameter, that is if we use call by reference, then the parameter actually is input and

output parameter. It is input because if I, when the moment I am calling whatever the

value that the actual parameter has, the formal parameter will also have the same value.

So, it serves the purpose of input. So, actually I do not need to do call by value. I can

only use call by reference. But, if I do call by reference, then the potential is that any

changes made to the formal parameter will also get reflected in the actual parameter. So,

any inadvertent change done in the formal parameter or intentional change is done in the

formal parameter, will spoil my actual parameter. So, can we do something so that I can

use call by reference, but just make it an input parameter. So, to do that, you make use of

the const.

So, what here? Just look at the code here. Particularly focus on this function, which is

taking one formal parameter x of type int. But, what we have done? Before that we have

said it is const. So, what does that mean? Because it is a call by reference because it is a

reference parameter, so when I call it at this point as a, a, and x refer to the same address.

But, I am saying that the reference x is constant; which means that no change of x is

possible. This is a situation which is very similar to what we discussed in case of

conciseness of pointer and the conciseness of pointed data. We are sure that the data

itself may not be constant, but if I am holding a constant pointed to that data, then

certainly that pointer will not allow me to change the data. So, similarly here I have a

constant reference or rather I have a reference to the conciseness of the data. So, x will

not allow me to change.

So, if within the function, I try to write something like plus plus x. This code will not

compile because plus plus x being that I am trying to change the value of x. But, x is a

constant reference. x is a constant value. So, whatever it got initialized with. What did it

get initialized with? It got initialized with a. When the call was made that cannot be

changed. So, now what happens? At the time of call the value of a will be available as a

value of x. There is the same address. But x, you cannot change within the function. So,

no way changes in a x can affect the actual parameter a. So result, the effect cannot come

back. So, now, the parameter becomes purely an input parameter.

So, using a reference we can make either input output parameter or we can make input

only parameter, if we make that a constant reference parameter. So, instead of using call

by value, in a large number of cases we will try to use just constant reference parameter;

because you would not need to do copy. And, we will still be protected that our actual

parameter will not get affected.

So, on the right hand side we just show that, what is a proper way of doing it, where x is

a constant reference and you do not try to. Here, we were trying to increment x and then

return that. Here, we do not do that. We compute x with adding one with it and then

return that so. The code on the right hand side will compile and run well. There is no

violation. The code on the left hand side will have compilation error and we will not be

able to proceed with that any further. At this point, we will stop and we will continue in

the next part.

