
Software Testing 

Prof. Rajib Mall 

Department of Computer Science and Engineering 

Indian Institute of Technology, Kharagpur 

 

Lecture - 09 

Pair-wise Testing 

 

Welcome to this session. So far we have been looking at black-box testing and we had looked at 

few black-box test strategies, but looked at equivalence class test cases. We have looked at special 

value test cases. We have looked at combinatorial test testing in the form of decision table based 

testing and cause effect graphing.  

Now, let us try to look at one more black-box testing which is also a combinatorial testing 

applicable when the number of input is large is known as all Pair testing or Pair-wise testing. 

(Refer Slide Time: 00:58) 

 

Let us look at the pair-wise testing strategy. As we are mentioning that many times we have 

situation, where we have many parameters and each parameter is either a Boolean or it can take 

several values. Let us look at this font setting in a word processor. 



(Refer Slide Time: 01:30) 

 

Each of these independently of the other we can switch on or off, strike through, double strike 

through superscript, subscript, small, caps and so on. So, why we can select 1 here, here and so on 

and not only that we can select any value here that is the font type, the fonts style you can select 

either regular, italic, bold or bold italic and the font size there are many sizes may be 30, 40 of 

them. 

Now, if we consider all possible combinations that will be a huge number. Let us, for example, let 

us say that these are 4, 3, 7, 3, 10. So, 10 input and let us assume that independently we can check 

them on and off for simplicity even though we can check only some combinations sometimes either 

a superscript or subscript and so on. Let us for simplicity assume that we can check, we can give 

any possible combinations of the input parameters here. 

The number of possible test cases required just for this much, these values is 2 to the power 10 or 

1024, but with that we have to also consider the font colour or to consider the font itself, if we 

assume that there are 10 here. Let us assume that there are 10 here and here and here, let us assume 

that these 3 have only 10 values of course, there are more than here for simplicity let us assume 10 

each. So, we have to consider 10 to the power 3. So, which is equal to 1000 and similarly we have 

combinations also corresponding to that here. So, just considering this and this and assuming 

conservatively there are 10 possible values here, it becomes 1024 into 1000 which is about a million 

values. 



So, it just too many we cannot really test all possible combinations. We cannot really have testers 

running all these million possible combinations just for checking 1 screen. So, what is the 

alternative? 

(Refer Slide Time: 04:34) 

 

So, that is all about the pair-wise testing. To formally state the combinatorial testing problem that 

we have n inputs and each input can take some number of values, some valid values 3, some can 

take 2, some can take 5 possible values and so on and we assume that the system does not have 

state. The system S behaves the same way all the time when these possible combinations are given. 

Otherwise the problem becomes much more complex which we can solve, but then first let us try to 

solve this simpler problem that the problem is state independent. The system that we are testing is 

state independent and then depending on the combinations of the values there can be bugs in the 

software. 



(Refer Slide Time: 05:44) 

 

If there are n is large 20, 30 and so on and number of combinations are just too many to be able to 

test all possible values. So, how do we reduce the number of test cases so that we can do effective 

testing using 10, 12 or 20 test cases and still we able to recover, able to detect almost as much bugs 

as the million test cases. So, that is about the combinatorial testing and the key observation here is 

that when a program is written with the 30, 40 parameters it is some specific combinations of a pair 

of parameters or a single parameter or maybe up to 3 parameters that causes the problem. So, if 3 

parameters, any 3 parameters that take ( ) specific value or any 2 parameters take some specific 

value or may be a single parameter takes a specific value then only the problem occurs. 

All possible combinations we do not have to try out that researchers have experimented with large 

number of software and found that almost all bugs are found out if we consider 2 test, 2 

combinations, if you have 40 input variables. So, let me just draw that. 



(Refer Slide Time: 07:31) 

 

So, we have input parameter p 1, p 2 up to let say p 40 and each 1 takes either 0 or 1. Now, let us 

say a problem may occur if let say p 1 and p 15 they have value 1 1. So, for this possible 

combination p 1 and p 15, both getting set we have the problem. For any other combinations like 

this is 1, this is 1, this is 1, this 1 etcetera no problem occurs only ( ) when we have this specific 

setting, irrespective of the setting of the other inputs values whether they are 0 or 1 it really does not 

matter. 

In that case to detect this kind of problem we need to really generate test cases which cover all pair-

wise values like 1 15 set to 1 1, 1 15 set to 0 1, 1 15 set to 1 0 and p 1, p 2 set to 0 1 1 0 and so on. 

So, here with the number of test cases required will be much less because we might have test cases 

like 1 0 1 0 1 0 1 etcetera. So, this 1 test case itself as several pair-wise values 1 0 here 0 1 1 0 and 

so on. So, the number of test cases required to generate pair-wise combination of all possible 

values, 2 parameters will be drastically less.  

So, for 40 parameters and each one taking 2 values we will need 2 to the power 40 test cases or 

considering all possible combinations of values, but if we consider only pair-wise values, all 

possible pair-wise values then the number of test cases may be 10 or 12 we do not know this a hard 

problem to know, but then we have tools available, we will just very simple small tools and run 

them and find out, they will give you the pair-wise test cases all pair test cases. 



Let us look at the details of this. So, the assumption that only 2 or 3 variables when they have some 

value irrespective of the values of other variables we have the problem appearing that reduces the 

number of test cases and experimentally over large number of software it has been found that that is 

really the case that almost every bug gets detected when we consider combinations of 2 or at most 

3. So, by 2 maybe large software might have got already 80 percent of the bugs, when you consider 

3 combinations we might get 90 percent and by 4 or 5 we might have got all bugs. We do not have 

to if their 40 parameters do not have to consider all 40, experimentally it has been shown. 

Let us look at the details of how do we what is involved in this pair-wise testing and how do we 

generate these pair-wise test cases manually and of course, they said that there are tools available 

where you just input the number of parameters and it will give you the test cases. So, the main idea 

why pair-wise testing works is that the fault is caused by interaction among a few factors. If you 

want to intuitively understand why it is so, if you look at the program code we do not really have 

the if case considering all possible combinations and then having cases for each of these, we have 

only if statements considering only few of the combinations of the conditions. 

(Refer Slide Time: 12:16) 

 

Let us consider this example that the interest rate, the amount, the months and then down payment 

and payment frequency. So, down payment is how much you pay at a time and what is the payment 

frequency, given this various parameters for a loan that what is the interest rate applicable becomes 

different. So, for the amount, the number of months what is the down payment and payment 

frequency? So, various combinations of these exist and we can consider pair-wise among these. Let 



say interest rate and down payment, month and the payment frequency etcetera then we would have 

found out all the bugs. 

(Refer Slide Time: 13:19) 

 

And the number of reduction and the number of test cases required is really dramatic. Just see here, 

if the number of inputs is 7 and each 1 can take 2 values these are Boolean, 7 Boolean inputs then 

the number of combinations is 2 to the power 7 which is 128, but the size of the pair-wise test set is 

8. If you have 13 inputs and each test 3 the number of combinations is 3 to the power 13 which is 

1.6 in 10 to the power 6, but then the size of the pair-wise test is 15 which is manageable just see 

million; 1.6 million and if it is 40 then and each 1 takes 3, just see here what is the number of test 

cases required, nobody in his lifetime can have such a system tested if each of these combinations 

have to be tested, but then the number of pair-wise test cases is 21, manageable somebody can run 

21 test cases. 

But then you might be wondering that how do I know that for 7 input and each one taking 2, I get 8 

and for these 15, I get 21. How did I get these numbers actually this is generated by the tool and 

different tools might generate different number of test cases for this. So, finding how many pair-

wise test cases will be required, a very hard problem, as I said that different tools can even generate 

different number of test cases depending on the algorithm they run, but then we can have algorithms 

that hill climbing combinatorial optimization like genetic algorithms and so on where we might get 

near optimal test cases. 



(Refer Slide Time: 15:46) 

 

Now let us look at the nitty-gritty of this. So, we call it t-way interaction fault in a program if it is 

caused by some combinations of t of the input values. We might have n inputs values n may be 40 

or 50 and out of that let say only 3 input values when they have some specific values 1 0 1, the 

problem occurs. The simplest t-way fault is a 1-way fault in a 1-way fault as long as 1 specific 

parameter is set to true or false or something then the problem occurs and a pair-wise fault is 2-way 

faults. 

According to this terminology a t-way fault is caused by combination of t of the input parameters 

and as you are saying that, if we consider up to 5-way fault then all possible bugs would have been 

discovered in a practical software and as experiment shows that a majority of the software faults 

consist of simple and pair-wise faults, even for a very large software, complex and large software if 

we consider pair-wise faults we would have got 80-90 percent of the problem identified and if you 

consider 3-way or 4-way we would have got almost every bug that is present and at a very reduce 

number of test cases. 



(Refer Slide Time: 17:48) 

 

Now, let us look at an example of a single mode bug. So, a single mode bug occurs when one of the 

parameters is set to some value irrespective of the setting of all other parameters we have a 

problem.  

Just look at an example that, the print out always gets smeared when you choose the duplex option 

in the printer dialogue box regardless of the printer type and other selected option. So, as long as 

you, one of the input check boxes you check that irrespective of the checking of all other, the 

problem occurs, and if you are not checked it you are not set this value duplex option then all 

possible combinations of other parameters will not cause any problem. 



(Refer Slide Time: 18:51) 

 

So, this is a single mode bug because it is caused by setting of a single parameter the problem 

appears a double mode fault or a 2-way fault occurs when two options are combined, for example, 

the print out gets smeared only when duplex is selected and the printer ( ) model is 394 only when 2 

of this parameters have specific value the problem occurs or no other combination the problem 

occurs in a multi-mode fault 3 or settings, specific setting per 3 or mode parameters caused 

problem. 

(Refer Slide Time: 19:20) 

  



Now, let us looks at an example program to understand 

(Refer Slide Time: 19:24) 

 

Why this most of the problems are 2-way problems. So, this is a program which is trying to 

implement something and it is checking there are many parameters and it is considering only 3 of 

the parameters and then it is checking x 1, if x is equal to x 1 and y is equal to y 2 then it is f xyz. If 

it is x is equal to x 2 and y is equal to y 1 then the output is gxy. So, at this point the programmer 

has missed to write this statement else if x is equal x 2 and y is equal to y 2, I should have written 

here y 2, if x is equal to x 2 and y is equal to y 2 then the output should be f xyz minus gxy else 

output f xyz plus gxy because he has missed this x is equal to x 1 and y is equal to y 2. 

So, the problem would occur. So, the programmer might either forget 1 of the, if class or maybe he 

would have written something wrong in the action part of the, if class. So, in that cases it would 

only when those specific settings are given it would cause the problem. 



(Refer Slide Time: 21:11) 

  

This is another example where Android smart phone has to be tested, the operating system has to be 

tested for various environmental settings. So, the operating system is configured by some 

environmental parameters like hard keyboard hidden, no to be set or hard keyboard hidden 

undefined to be set, screen layout is large or it is normal or it is small have to be set, or it is the 

orientation which is landscape or portrait. So, this is the configuration for android for a specific 

phone set.  

Now, if we consider these variables which can take different values. So, we have 172,800 test cases. 

So, just too many, but you can try out the pair-wise testing, 3-way testing, 4-way testing, 5-way 

testing and by that we would have got almost every bug. 

But then what we did not answer till now is that how are the pair-wise test cases generated, can we 

have some simple algorithm by which given a set of parameters and the values these parameters can 

take, can we get the pair-wise test cases. As I was saying that generating the optimum number of 

pair-wise test cases ( ) is a very, very hard problem and we can try out evolutionary algorithms, 

genetic algorithms and so on. But let us look at a simple algorithm which will give us most of the 

pair-wise test; I mean non optimal number of pair-wise test cases. 



(Refer Slide Time: 23:20) 

 

The first thing is to identify what are the variables, let us say we have orientation as 1 of the input 

parameter which can take 2 values portrait and landscape. We have screen as another parameter 

which can take 3 values and keyboard is another parameter which can take 2 values. So, the first 

thing we do is arrange this table, these are the input parameter table.  

We arrange this table such that we first consider the parameter which takes the largest value if there 

are 2 which take largest will consider any 1 of them and then we arrange the next 1 and so on. So, 

we rearrange this table of input values such that the left most column has the largest number of 

possible values that it takes. So, here just an exhaustive testing will consider 2 into 3 into 2 numbers 

of test cases, but we can generate pair-wise test case which will take much less than that. 



(Refer Slide Time: 24:43) 

 

The first thing we did was we arranged the input parameters, the one that take maximum number of 

possible values that we arranged first, and one with next number of parameters and then the one 

with less or equal to this number of parameters, and remember that this is just a heuristic and we are 

just trying to generate manually test cases need not give the optimum number of test cases and also 

we have to manually check. 

(Refer Slide Time: 25:04) 

 

 



If the test cases are all right, otherwise you have to manually correct it and now in the next step we 

just arranged, we have taken the parameter which takes the maximum number of values and we 

have arranged it for the other parameter takes 2 values. So, I have written 2 of these here large, 

large, small, small, normal, normal and then this we have written alternatively portrait, landscape, 

portrait, landscape, portrait, landscape. 

(Refer Slide Time: 25:59) 

 

In the next step we take the third parameter and we just write down alternatively QWERTY, 12 key, 

QWERTY, 12 key, etcetera and then we can add more variables here and, but we have to make sure. 



(Refer Slide Time: 26:12) 

 

If all the pairs are present manually if not we make ( ) some adjustments here. So, that every pair of 

values between screen and keyboard screen and orientation, orientation and keyboard whether they 

exist are not. Otherwise we just adjust these values here little bit. So, that we get the pair of values 

or we can insert additional rows here to generate all possible combinations.  

So, we have large and portrait and we have landscape and large and we have QWERTY and large 

we have 12 key and large and we have portrait and QWERTY, but what about landscape and 

QWERTY yes we have here. So, we just write down the values here and similarly, we do for the 

other parameters find out if any specific combinations are missing we try to add additional rules 

here. 



(Refer Slide Time: 00:58) 

 

So, this is a manually way of generating the test cases for all pairs testing. So, we can keep on 

adding pairs and then checking whether all possible combinations are existing or not. 

(Refer Slide Time: 27:29) 

 

And finally, there may be duplicate test cases, we try to reduce the number little bit. So, this is a 

manually algorithm for generating test cases. 



(Refer Slide Time: 27:48) 

 

But then there are several small tools as they were saying they are available, you can just download 

them and run them and given the input parameters and the possible values. It will give you the exact 

test cases, the tools you can look on the Google PICT runs on the windows and I thing also on the 

Linux platforms, Jenny which is open source C program. You can see the Jenny program which as 

small C program possible 100-200 lines and you download the source code and run it and then all 

pairs is another tool.  

There are several tools available, small tools and you can there will give you the number of test 

cases and as I was saying that you try with different values of input parameter and each parameter 

takes different number of values. Then these tools may give different number of test cases for them 

because they possibly use different algorithms. 

But in any case, it will be worthwhile if you download this tool and run them it is quite easy small 

tool very usable tool. Most of these do not even have a GUI, that test interface. So, please do that 

and we will discuss about white box testing in the next session. 

Thank you. 


