
Software Testing

Prof. Rajib Mall

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture – 05

Unit Testing

Welcome to this session. So, we will continue our discussion on Unit Testing. We were saying that

in unit testing each unit is tested independently of the other units.

(Refer Slide Time: 00:29)

So, what it really means is that, if a unit needs to be called from some other unit and also, it calls

some other units, then since you have to test it independently, we need to write small software here

called as a drivers and stubs.

(Refer Slide Time: 00:48)

 A driver is one which simulates the behavior of the function or the unit that calls this unit and

possibly supplies some data to the unit being tested; whereas, the stub, it simulates the behavior of a

function that has not yet been written or it is not available.

So, we are testing this unit, independent of the other unit and therefore, we use a stub here, which

simulates the behavior of the other unit, possibly we have just stored some values here, that, if 2 is

called, this other unit is called with the data 2, then it returns the data 11 or something. So, may be

just a look up. These are very simple software, the driver and stub and these simulate the behavior

of the other units, because we are testing this unit in isolation.

(Refer Slide Time: 02:09)

This just explains that little bit. So, this is the unit and then the stub is the one which this unit needs

to call and the stub we have written here, for some sample data, we look up; and for, if your data, if

it is called with some value, just look, looks up the result here and returns that. Whereas the driver,

it not only calls the procedure under test that is a unit, it possibly might have other global data and

so on, which this procedure might need. The unit might need some global variables and so on; the

driver would have that.

(Refer Slide Time: 02:58)

Now, let us have a small quiz. We know the unit testing, at least what is its purpose. Now, what do

you think, would unit testing be a validation activity or a verification activity? We had actually

discussed this issue sometime back that, whether unit testing will be a verification activity or a

validation activity. Actually, the answer is that, unit testing will be a verification activity; it is not a

validation activity, because validation means, we are testing the working of the entire system, with

respect to the requirement specification; whereas, in unit testing, we are testing only one of the

functions or unit, with respect to the design.

The high level design or the detailed design, sorry, the detailed design will have the specification for

this unit. We are checking, in during unit testing, whether the, the code is written in conformance

with the detailed design. And therefore, unit testing is a verification activity.

(Refer Slide Time: 04:23)

Now, let us see, how we design test cases for unit test. There are essentially 3 main approaches for

designing test cases. One is black box approach, white box approach and grey box approach. The

black box approach, as the name says, we do not have, we do not need to look at the code of the

unit; we just look at the input, output behavior of the unit; that is, the specification, detailed

specification, where we will have this unit, what does it do; given a data, what data does it, what

result does it produce. And then we have this white box testing, where we actually have to look at

the code. We look at the code, to design the test cases, based on whether some code elements are

getting covered, decisions, conditions, and statements and so on.

The third one is a grey box approach, where we look at the design of the unit and we come up with

the test cases. So, in a black box, we just look at the input output behavior and come up with the test

case. In white box, we look at the code and based on the source code, we design the test cases. In

grey box, we do not look at the input output specifications, neither the white box, oh sorry, the code;

we just look at the design of that and based on that, we come up with the test cases.

(Refer Slide Time: 06:14)

First, let us look at the black box approach. In the black box approach, the software is actually, the

unit that we are considering, is considered as a black box. We do not know how the code has been

written; we just know what is the input that it takes and what is the output it produces. So, this is

also called as a functional specification of the software. So, the test cases are designed here, looking

at the functional specification; we do not need to look at the code here. And, for this reason, the

black box testing is also called as functional testing.

(Refer Slide Time: 07:01)

But, before we look at the black box testing strategies, let us answer a very basic question that, what

is hard about this black box testing. We know the input data; we know the output result that is to be

produced. So, what is hard about this? The hard about this black box testing, it is very hard because

typically, for a practical software, the data for a unit will be extremely large, the data domain. So,

testing, with respect to all elements of the data domain, will be very difficult; and not only that, it

might take, unit might take multiple parameters and each parameter will have its data space; and,

when we do testing, we will not only have to consider the data values that are taken by each

parameter, but also, we have to check the different combinations of the different parameters.

Just having a parameter taking all values is not enough. We will have to check for each value of one

parameter, what are the results when all other values for the other parameters are considered. So,

that is the combinations; the combinations of the values for different parameters. So, this is the hard

problem; not only, even if it takes one parameter, number of test cases can be very large and then

typically, you will have to consider multiple parameters

 (Refer Slide Time: 09:00)

Just to elaborate the problem, we will take a very simple example; that is we have written a very

simple code, takes 2 integers as argument. Our unit here is a function; name of the function is check

equal; taking 2 integers as parameters and then returns zero, if they are not equal and returns 1, if

they are equal. Very trivial function and we are trying to test it. But then if we want to test

exhaustively, whether it works for all possible values of x and y, we will have to consider how many

values are, what is the domain size for x and y. So, the domain size for x, assuming a 64 bit

computer, is 2
64

 ; and similarly, for y is 2
64

. And then we have to consider all possible combinations

of these 2 parameters; and therefore, it becomes 2
128

. And then if we really test with this data value,

2
128

, let us just, for our curiosity, check how long it will take. If we take 10 seconds, keying it very

fast, each value, pair of value, it will take billion years to enter all possible values.

But then you might say that, why not automatically generate all this possible values and let the

computer execute. So, that also will take long time to generate all possible values, because each

execution takes finite time and it will keep on running for long time; and not only that, such

automatic testing has its own problem; because if the result is produced, we do not know whether it

is a correct result. So, only thing that we can detect is a crash.

Anyway, what we really wanted to point out here is that, the hard thing about black box testing is

that, the number of possible data items are extremely large. So, our objective in test case design is

to design a set of test cases, which should be as effective as testing with all possible values, but we

should use a minimum number of test cases.

(Refer Slide Time: 11:42)

So, how do we do that? The main idea in black box testing, we will look at several black box

techniques, but one thing that is common to all this is that, we construct a model of the domain;

because the data domain is very very large, you cannot really test it effectively, by looking at the

domain itself, other than taking all possible values. We construct a model and then this model, we

call as the domain model and based on this domain model, we select test data from this model. So,

that is the main idea here. Now, based on that, let us see, how we design the test cases.

(Refer Slide Time: 12:39)

Before that, let us have one basic idea about white box testing. White box testing, we look at the

code and based on that, we know what is the internal structure of the software and therefore, the

white box testing is called as the structural testing.

(Refer Slide Time: 13:02)

Now, let us look at the black box testing and how do we design test cases; what are the different

strategies available for designing the black box test cases.

(Refer Slide Time: 13:14)

Black box test case, as we are saying we just look at the input output behavior. We know what will

be the input, corresponding output and system; we do not have any knowledge about that; appears

like a black box to it; and therefore, it is also called as input output driven testing or data driven ()

testing. So, our goal in test case design is to achieve the thoroughness of exhaustive input testing,

with as little number of test cases as possible.

(Refer Slide Time: 13:48)

There are many black box test strategies that exist; Scenario coverage, Equivalence partitioning,

Special value testing, Boundary value testing, Cause-effect testing, Combinatorial testing

orthogonal array testing and so on. Let us look at these techniques.

(Refer Slide Time: 14:19)

First, let us look at the equivalence class testing.

(Refer Slide Time: 14:26)

In equivalence class testing, we need to construct a model of the domain, called as the equivalence

partitions. We partition the input domain to equivalence classes. The idea is that, the partitioning is

done such that. So, we will partition the data, input data, into a number of, number of classes, such

that, each class will be, when you consider value from any class, the result will be the same as

considering any other value from the same class. So, the program behaves in a similar way for

every input value belonging to an equivalence class.

When you consider, we have developed the equivalence classes; for any equivalence class, all the

values are equivalent to the other values, in the sense that, checking the software with any one

value, is as good as checking with all other values of that class. If you are doing a scenario based

testing, in scenario based testing, it is very simple, where we just execute its scenario of the

software. Let us say, book return example, the scenarios can be that, the book was returned

successfully; another scenario can be, there are somebody who had reserved the book and therefore,

the book return could not be done. So, whether it could not, it was really that, it could not be done

when somebody else had reserved. So, that is a scenario.

The third scenario, may be the membership of the member had expired and when renewing, it said

that, the membership has expired; you cannot renew the book; please return the book. So, whether

this scenario is correctly implemented? So, in a scenario based testing, the requirement specification

document, typically documents all possible scenarios of operation, of various functionalities. And,

in scenario based testing, we just write test cases to execute each scenario. So, in equivalence

partitioning, obviously, each scenario is a different equivalence class. This says that, if we know the

scenarios, know the specification for this unit and we know what are the scenarios for this, then we

will have as many equivalence classes at least, at least as many equivalence classes as there are

scenarios of operation, for this unit. Of course, there will be more equivalence classes; let us look at

those.

(Refer Slide Time: 17:56)

The premise of equivalence class testing is that, the input domain, we are partitioning into different

equivalence classes. So, this input domain is partitioned into 3 equivalence classes and the main

premise is that, if we take any one value from this equivalence class that should test the system as

good as any other value taken from the same class. So, for equivalence testing, we just consider one

value. So, what is the logic behind this assumption that, any value is as good as any other value?

The assumption is, the basis for this assumption is that, once one feature, the software is exercised

with one of this test data, it executes certain elements; and all other elements are executing the same

set of program elements; and therefore, we will observe if it is success for one, then it will be also

success for all other; if it is a failure for this and there will be failure for all other. The main

assumption here is that, any one element here will be exercising the same set of program elements

as any other data here.

(Refer Slide Time: 19:38)

Now, the hardest problem here, in equivalence partitioning is that, given a unit and its input output

description, how do we design the equivalence classes? So, one thing is, we identify the scenarios;

we examine the input data; we examine the output that might be produced for different data; and

then based on that, we design the equivalence classes. So, we can have few guidelines about how to

design the equivalence class partitions.

(Refer Slide Time: 20:19)

One is that, if an input data is specified by a range of values that, it can take between zero to 1000

or something, and then we have 1 valid and 2 invalid equivalence classes. If it specifies a specific

number of test data, then we have 1valid and 1invalid equivalence class. If it is, input is a Boolean,

and then we have 1 valid and 1 invalid equivalence class. For example, let us say, the area code for

a telephone number is value between 10000 and 90000. So, what will be the equivalence classes?

So, there will be 3 equivalence classes; 2 invalid; less than 10000, more than 30000, sorry, 90000

and valid equivalence class between 10000 and 90000.

Similarly, you might have a password 6 character string. So, here also, we will have 1 equivalence

class, which is less than 6 characters and another equivalence class which is exactly 6 characters;

third equivalence class, which is more than 6 characters.

(Refer Slide Time: 21:52)

Now, let us look at some examples based on what we discussed and see if we can identify the

equivalence classes; and later, we will have some practice also given, so that, you can test whether

you can have practice design equivalence classes; and depending on the unit that under test, it can

be very very challenging to design the equivalence classes. Let us look to start with, let us look at a

very simple problem. Our unit or a function, takes 3 integers, denoting 3 sides of a triangle. Now,

our function just writes down the type of the triangle, whether it is isosceles, scalene, and

equilateral.

So, our function that we have written, takes 3 integers and then prints out or displays, what is the

type of the triangle, whether it is a isosceles, scalene, equilateral, not a triangle and so on. So, how

do we design test cases?

(Refer Slide Time: 23:21)

We do a scenario coverage that is the first thing. Just see here that, these are the different scenarios

of operation. In one scenario, it writes down isosceles; another scenario, scalene; third scenario,

equilateral; fourth scenario, not a triangle and so on. We must have test data, sorry, equivalence

classes, defined corresponding to isosceles, scalene, equilateral, not a triangle, because different

elements of the program are exercised, when we declare, where the function declares the 3 sides to

be isosceles, scalene or equilateral. So, we just take 1 value from here, 1 value from here, 1 from

here. So, these are, once we have the equivalence classes corresponding to this, we have those

values.

(Refer Slide Time: 24:29)

So, the main idea here is that, the first level in the equivalence class, we have 2 sets of values that

we design; 2 sets of equivalence classes; 2 equivalence classes here, 2 sets actually, the valid set of

equivalence classes and the invalid set of equivalence classes.

(Refer Slide Time: 25:10)

First, we have 2 here, valid, invalid; and, for each of this, we design, we look for further

equivalence classes, in the valid. So, these are set of valid equivalence classes and these are set of

the invalid equivalence classes. And then once we have done the equivalence partitioning, we found

out all the valid equivalence classes and all the invalid equivalence classes; we just pick one value

from each of them, randomly and this will form our equivalence class test suite. So, will stop here

and we will continue from this point in the next session.

Thank you.

