
Software Testing

Prof. Rajib Mall

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture – 04

Basic Concepts of Testing (Contd.)

Welcome to this session. Now let us continue with some of the basic concepts that we were

discussing in the last session. So, we were discussing about test cases. Software is tested with a

large number of test cases, and this set of test cases is called as Test Suite.

(Refer Slide Time: 00:53)

Each test case basically executes some functionality of the software. And as it executes the

functionality, it covers some program elements; it executes or covers some program elements. The

program elements can be statements, or conditionals or some jumps etcetera. But then we measure

the coverage that is achieved by a number of test cases and check whether the required number of

the required elements have been covered. So, these are called as coverage base testing, where we try

to ensure that the targeted elements are covered.

On the other hand, we also have few fault based testing, where we do not target really coverage, but

these try to expose that whether certain types of bugs have been tested and removed.

(Refer Slide Time: 01:58)

Now, let us distinguish between test data and test cases. A test data or the data which we input for

testing, but that test case not only have test input that is test data, but also a test case denotes the

program state at which we apply the data. For example, we might have chosen certain menu item or

may be logged into the system and so on, so that is the state of the software and also the expected

result. So, once the test case has been designed and documented in this form that, what is the state at

which we will apply the input that is logged in, chosen some menu item. And then we input the test

data and then what will be the result, so that the tester during testing can just carry out this

procedure and check.

(Refer Slide Time: 03:07)

So, we can say that a test case at the minimum is a triplet. Input - the test data, input is the test data;

S is the state of the software at which the input is to be applied; and O is the expected output.

(Refer Slide Time: 03:29)

But before we proceed further, let us look at another very basic concept. We design both positive

test cases and negative test cases. Positive test cases, they check that given a valid input, whether

the program is working satisfactorily, but what if, the user gives input which is not really intended

to be given.

For example, let us say the programmer typed the character where a number was to be written; so

instead of 23, he wrote some a, b, c will the software crash so that we will call as negative test

cases. A negative test case handles whether the software is well behaved when invalid and

unexpected inputs are given. So, the positive test cases check the working of the software, when the

inputs are valid. Whereas the negative test cases, check that the program behaves gracefully when

invalid inputs or unexpected inputs are given.

(Refer Slide Time: 04:56)

Software is tested using a large number of test cases, which are designed based on some tests

strategy. We will look at many tests strategies, many black box strategies, and white box strategies.

And these test cases, the set of all test cases that are designed is called as the test suite that is the

terminology that is typically used.

(Refer Slide Time: 05:29)

Let us look at one example test case. Let us say we have library software; and we are trying to write

one test case for return book case; taken the library example, because everybody is familiar with

such a software. We have taken book and they are trying to return it.

So, what will be the test case? Here, in the test case, we write the state of the test case; the state of

the software is the book has been created, member record has been created and then after that the

book has been issued to the member, so that is a state at which the input data - the test data is to be

applied. And the test data is renew request for a 2 week period. And then the output is, observe the

output which is intuitive that whether if the book is renewed or not.

(Refer Slide Time: 06:52)

There are prescribed formats that have been designed with lot of thought for documenting the test

case. So, we just discussed a triplet, which was the very least to describe a test case, but just see

here a more elaborate format for recording test case.

For example, writing the test case number, test case author, test purpose, the precondition that is the

state at which the inputs are to be applied, the test input, what are the outputs and then what is a

post condition, what would be the program state after the test has completed, and then test execution

date, the person conducting. The test result - pass or fail; and if fail, what are the details of the

failure, what really happened, and then what is the fix status, which is once this is given to the

developer; they would try to fix it and they would write the fix status.

(Refer Slide Time: 08:06)

Now, in the test team, there are various categories of testers, who do different activities. Now let us

look at what are the different types of testers that can be there. For example, we might have test

case planning, so for which, we need very experienced testers. Test scenario and test case design; a

test scenario as you will see is that a very high level description of a test case, where is a test case is

the actual test case where we write all the details like what exactly is the input data, what state and

so on. Now we fill up that template, just we showed the previous slide. Here also for test case

design, we need experienced and qualified people.

For test execution, actually taking the test cases and executing manually first time, second time of

course, we can record and replay. So, the first time, semi experienced to inexperienced persons, they

can give the input, take the software to a specific state give the input and observe whether the

software is behaving as expected. Test result analysis, so this also need experienced people, what

really happened during the testing; was it a failure and so on. And then test tool support, so if test

tools are used supporting those we need experienced people; and not only these we might need

external persons for example, users for performing usability tests and so on and also the industry

experts.

(Refer Slide Time: 10:02)

But one basic question that we need to answer at this point before proceeding further is that why

designed test cases, what is the advantage compared to random input of test cases. Why not give

random inputs 10,000 values and that would be much more time effective; in an hour, we can give

1,000 inputs may be we will ask 5 different testers to give keep on giving inputs. So, why do we

have to design test cases? The answer is that even if we test with 10,000 random inputs, we might

not have tested it well; the main reason is that many of those random inputs might be trying to test

the same type of bugs or they might be covering the same type of program elements.

(Refer Slide Time: 11:05)

The test cases may not be effective. So, just saying that we tested with 10,000 randomly generated

test cases may not mean much.

(Refer Slide Time: 11:24)

Just to give an example - that we will show it with a small program, finding maximum of two

integers x and y, very small program, just two line.

(Refer Slide Time: 11:34)

If x greater than y, max is equal to x; else max is equal to x, this is what the programmer wrote, but

then the bug is here should have written max is equal to y, else max is equal to y. But then let us see

the test cases with which it tested. So, somebody tested with 3 2, 4 3, 5 1, etcetera, etcetera;

hundreds of test cases where used, but then that would not expose this bug, because each time only

one statement is executed; the other statement is not even executed. So, just saying that we tested

with 1,000 test cases and each time x is larger than y does not bring out the bug; whereas, just two

test cases would bring out a bug in either of these statements.

(Refer Slide Time: 12:34)

Another basic concept that we will discuss before looking at different testing strategies and test case

design is a Test Plan - before the testing starts, a test plan is produced. So, what does a test plan

contain, a test plan is what are the features to be tested, what are the features not to be tested, may

be for a specific release, we are not planning to release some features, they have been included, but

then not planning to release to the customer. So, we need not test that.

What are the different test strategies that will be employed? So in black-box testing, do we do

equivalence testing, boundary value testing, condition testing, and combinatorial testing etcetera,

etcetera? So, what are the different types of testing strategies that we will use? And test suspension

and criteria, so here this is basically a stopping criteria. So, if we say that if some core features do

not work, then we do not test it further, we just give it to the developer to fix the core functionality

before the other functionalities can be tested. And there is estimate of test effort and also test

schedule how many days expected to test. So, this is a typical test plan that is developed before the

testing starts.

(Refer Slide Time: 14:13)

Now, let us look at the design of test cases. So, in designing test cases, one thing is clear that as far

as possible the different test cases so target to detect different types of bugs, because hundreds of

test cases, trying to detect the same bug will be a waste of effort. They would not achieve too much

in exposing the other types of bugs that are present.

(Refer Slide Time: 14:43)

So, we will have many tests strategies. Each strategy is actually a bug filter, and we need many of

these strategies. So, during test planning, we decide which types of tests, which strategies to deploy,

how much effort to be given for each strategy. So, do we look at the equivalence tests, 100 hours,

and then the condition test 5 hours or is it vice versa. The equivalence test will give 5 hours and the

condition testing 100 hours, so not only which strategy is to deploy, but how thoroughly or how

much time we give to that strategy during testing.

And then for black-box testing do we use a usage-based testing, so that is based on how the

customer actually uses. So, some features usages are used by the customer very heavily and other

features not so much. So, do we test in proportion to how the in what frequency the users use it.

Actually, it is a good idea to give as much effort to a feature as the users use it.

Some features is used very heavily, for example, in a library software, book issue and book return

are features that are used heavily, but a book lost report feature may not be used that much;

reporting a book lost may not be used that much compared to a book issue and book return. The

idea here is that the book issue and the book return features, if there even small problems, bugs are

present. This will be noticed by the users, but the book lost feature is used very rarely; and if there

are few problems there that may not be noticed immediately. So, the usage-based testing is one

thing that to be considered while doing the test planning.

And then the white-box testing, which is carried out after the black-box testing. So, this we might

get guided by the black-box testing result. So, what do you mean by the guided by black-box testing

result. During black-box testing, we might find out the specific components the software which

have bugs; the specific types of features. And then in white-box testing, we might spend more time

testing those features which were showing bugs, because one very peculiar thing bugs is that they

occur in clusters. If some part you detect bugs, there will be more bugs there. They live in

community large number of bugs will be living there. Whereas the parts that are relatively very few

bugs are getting reported, there will be actually less bugs to look for.

(Refer Slide Time: 18:08)

Now, based on that let me just ask this question that our passed data indicates that reviews detect

about 10 percent of the existing bugs, I mean this not real situation, just an example that reviews

detected about 10 percent of the bugs. Unit testing exposed about 40 percent of the bugs; integration

about 25 percent; system test 15 percent and customers finally, when the software was shift to them,

they reported 10 percent. So, this is the data for a company which has been shipping software to its

customers based on may be 30 or 40 software that has shipped it has collected the data, how much

bugs are getting exposed by each of this techniques.

So, how would the company or the test manager plan the test effort? The answer is not very

difficult. Since unit testing is exposing more number of bugs, it is a very effective technique, and

therefore, we should spend more time on unit testing compare to let us say reviews, system testing

if this is the data, but then it is not real data, a hypothetical data. In a real data reviews, actually

expose lot of bugs.

(Refer Slide Time: 19:50)

Now, let us look at another one, a test planning that we are using many test strategies. So, strategy

1, which is may be equivalence partitioning, boundary value and may be condition testing. So, the

first one detected 50 percent of the problems, second one 30 percent, third one 10 percent. So, how

would we plan the test effort? Here also the answer is easy. If test technique one is effective, we

should do it well. So, it should give enough time for test technique one and then we should spend

time on test technique two and finally, much less time on test technique three.

(Refer Slide Time: 20:50)

This is another data that while testing doing the black-box testing; we found that different modules

had different bug contents. Module 1 had much more bug then module 3, but module 6 had the

highest number of bugs. So, how do we do the white-box testing? So, we have to do this much more

thoroughly. And the situation may occur when we have released software, and then we are trying to

release the version 2 of that software. So, there also we might do similar planning.

The main reason here as we are discussing is defect clustering. A few modules usually contain most

of the defects so that is the observation what is the reason, the reason is that possibly that module

was very complex. And therefore, most of the defects are there in that module the other modules

which are either straightforward, there are less number of problems or may be one module is written

by very experienced programmer who understood the problem very well, and there were very few

problems.

But there is another module written by a first time programmer, did not understand because was not

very conversant to the language and neither with the algorithm and so on, so there will be large

number of bugs. So, we need to spend more time testing that module, we should not spend uniform

time in testing all the modules.

(Refer Slide Time: 22:47)

Now, let us start our discussion unit testing. We just said earlier that unit testing is undertaken once

the code for a unit is complete; a unit we said can be a function; it can be a module; in object

orientation, it can be a class; it can be a component in a component base development. In unit

testing, we start the testing activity as soon as the code for that unit has been written and has been

compiled. So, compilation errors have been removed, syntax errors.

(Refer Slide Time: 23:36)

Now, let us look at some basic concepts in unit testing before we start looking at the test case

designing. So, unit testing is carried out after the unit coding is complete and it compiles

successfully.

(Refer Slide Time: 23:52)

But before we look at how really to design unit test cases, let us answer a basic question that cannot

we just do the system testing well, why tested the unit level, cannot we just spend all our effort on

doing a good system testing, why do unit testing and then finally, do integration and system test.

Let us look at the answer here. This is an example where we are there is a bug and while doing the

system testing failure was reported. Let us assume that unit testing, we did not spend time, we are

doing a thorough system testing. And each, we do a test, and just find a failure, and then there are

some bugs which cause the failure. Now, have this entire thing to look at, may be the code is tens of

thousands or fifty thousand lines long, and we have to look through there somewhere trying to find

out where the bug is.

(Refer Slide Tie: 25:11)

On the other hand, if the bug if I done the unit testing, and when we observed the bug, we might

have very small number of code to look at, and we can easily identify the bug. So, unit testing can

think of that it reduces the testing effort, debugging effort, because system testing same bug may be

caught, but then it will be very expensive to correct it. Whereas unit testing we can easily localize

the bug, because the lines of code look for is very small compared to system testing.

Now, in unit testing, we test the units in isolation. What it really means is that if the unit has a driver

or some other unit needs to call it, and it needs to call some other units to get the result then we

have to write the driver in stub before we can do the unit testing. So, driver is the one which calls

the unit, provides some data to it; and the stub is the one which the units needs to call and uses the

result of the other unit to produce its results.

Before we start unit testing, we might have to write the drivers and stubs for the unit. So, we will

just stop at this point, and we will continue from this in the next session.

Thank you.

