
Software Testing

Prof. Rajib Mall

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture - 20

Testing Object-Oriented Programs (Contd.)

Welcome to this session, we shall continue our discussion on Testing Object - Oriented Programs.

Remember that in the last session, we said that there is lot of expectation in the object oriented

paradigm, in the sense that it was expected that the object oriented paradigm will make testing a

very simple because the object orientation is found on very well formed principles.

(Refer Slide Time: 00:40)

But we were seeing that the different features introduced in object oriented programs actually make

testing either difficult, or they cause () new types of bugs requiring different testing strategies.

(Refer Slide Time: 01:28)

Let us continue from where we are discussing last time. Inheritance is a prominent feature of object

oriented paradigm and inheritance helps code reuse. Once code is returned in the base class the code

is reused in the derived classes. So, () the question is that if the methods have been tested in the

base class. So, those methods once they are inherited in the derived class should they be tested

again?

(Refer Slide Time: 03:58)

We had seen in the last session that retesting of the inherited methods is the rule rather than

exception. So, all the inherited methods even though they worked fine in the base class there is no

guarantee that they will not work correctly in the derived class and therefore, the inherited method

have to be retested in the derived class.

So, if this is your class hierarchy, there is a base class and then in the first level derived classes new

data and methods are introduced and then both of these methods are inherited by the second level

derived classes and all the methods that are inherited by these base level classes; leaf level classes

all have to be retested.

(Refer Slide Time: 03:13)

If you remember, we had said that retesting is necessary because there is a new context of usage. By

the term the new context of use, what we mean is that there can be new class variables introduced in

the derived class. There can be new methods in the derived class and that is the new context with

which the inherited methods will be used and therefore, they need to be tested and this is what

follows from the Weyukar's Anticomposition axiom.

So, the correct behavior of a method at upper level does not guarantee that the method will behave

at a lower level class. Let us look at an example, we have a base class A where a class variable x is

assigned value to 100 and then we have a method m which manipulates the value of x, but then

makes sure that the value is always greater than 100 and for the method m to a work correctly, it

always needs to be 100, but then when it was later extended into a class B, a new method m1 was

introduced, but then the programmer here, who extended the class A into class B did not pay

attention to the invariant that x would be 100.

So, he assigned x is equal to 1 and therefore, m which work correctly in A once m 1 is called, will

fail, the method m will fail in the extended class B. So, the execution of the m 1 causes the A bug in

m and therefore, unless we test m here in the extended class B, we would not be able to discover

that bug. Here is another example, here we have a class A which was two methods m1 and m2 and

m calls m2 methods and class B which extends A overrides the method m2.

(Refer Slide Time: 05:46)

So, now when m is called in the context of class B due to a dynamic binding, the m 2 of class B will

be called. So even though m worked correctly in the context of class A the same m when inherited

in class B and m is calling m 2, but m 2 will bind to the m 2 in the class B and therefore, m can fail

in class B. So, we can construct many other examples which, so that the method which works

correctly in a base class fails to work correctly in the derived class.

I request you to construct few examples yourself, where a method works correctly in the base class,

but then when extended derived and the method fails, so that will give you an understanding of

how, why retesting of the methods is required. Please try and of course, if there is an overridden

method in a derived class then obviously, the overridden method has to be tested.

(Refer Slide Time: 07:27)

Even though there may be on small change introduced by the derived and overridden method. So, if

we look at it in a derived class, we need to test all the new methods obviously, because these are

will be retested first time and all the inherited methods have to be tested because these inherited

methods will be used in the context of the derived class.

(Refer Slide Time: 07:53)

And also all the overridden methods, the redefined methods have to be tested. So, what really it

means that all the methods of a derived class have to be tested. So, object orientation, it is for a

testing is concerned does not give any benefit in reduction of the testing effort as far as inheritance

is concerned. Now, what about regression testing?

(Refer Slide Time: 08:27)

If we in a class hierarchy, if we make a small change to a method in a top level class, what do you

have to do in the other classes, can we just test the method in the top level class and just leave it

there or do we have to test it in all the class hierarchy the same method in every class in the class

hierarchy? So, unfortunately if we make a small change let say show-address() is a method in the

base class which is inherited in all these classes.

Now, let us say after I have developed an application, we make a small change to this method in the

base class. So, do we test it well in the base class and leave it there? No, we have to test the same

method in every class in the hierarchy.

(Refer Slide Time: 09:42)

If we have a deep class hierarchy we will have lot of testing to do. We might in a derived class, we

might just add one method or two methods or few data variables, but all those inherited methods

have to be tested again and also we have more chances of faults occurring here because too many

methods interacting with each other accessing a global variables, it is something like a procedural

program where we have global variables and all methods are inter interacting through them.

In case of deep hierarchy the encapsulation is weakened. So, if we have a deep class hierarchy what

may be the solution, one thing is that a deep class hierarchy may introduce bugs, result in low

reliability of the software, reduce testability because too many test cares testing has too much of

testing has to be done and also incorrect initialization and forgotten methods may result. So, one

possibility is that we may flatten the class hierarchy, but then that also has its own problem. So, a

deep class hierarchy is not good and also if we have multiple inheritances as in a language such as

C++, then we might have too many contexts to test.

(Refer Slide Time: 11:53)

Now, what about abstract and generic classes? The abstract classes provided in object oriented

programs to help increase reuse of code, but then we can extend abstract class in many ways and

therefore, an abstract class may never be considered as fully tested. So, we do not, since abstract

class cannot be directly tested, it cannot be instantiated therefore, we test it only through its derived

classes and each time we have a derived class we have a case for testing it.

Now, what about polymorphism? This is another prominent feature of object oriented programming.

So, we know that polymorphism is () present in object oriented programming either a static binding

or is a dynamic binding. So, for each case separate testing is needed. For at least statistic binding,

(Refer Slide Time: 13:05)

we know that, what are the methods to which it can be bound? But, in case of dynamic binding

there may be many classes method, in many classes where it can be bound dynamically and

therefore, finding all the bindings may be difficult because classes may also get extended by

different programmers.

(Refer Slide Time: 13:41)

Just look at this example, where the class c has a method which gets a mount to method of S1, S2

and S3. So, we have difficulty in integration testing because unless we have S2, S3 and S1 tested

and integrated. So, we cannot test C. So, the server classes which provides service to the class C, C

is the client class unless these have been tested and integrated, we cannot test C. So, the dynamic

binding is a cause for concern in testing because we do not know, what are the bindings that may

occur? We cannot use just code analysis statistic analysis to find all the dependencies that may

occur in a program just to give an example.

(Refer Slide Time: 14:47)

Let say, we have a class member and then we have a method here, let say Boolean validate

payment. So, the member might have an Indian Account, UK Account, European Union Account or

Japanese Account or any other account and we might pay it through a VISA Card, American

Express Card or a Debit Card.

Once the method validate payment is () called, first the member since it can be bound to the

derived members Gold members, Silver member and Ordinary member. So, first is the binding that

may occur with respect to the member. Now, when we invoke the function member dot validate

payment. The validate payment also the account in the card can get bound to any of these. There are

3 here and there are 5 here and then there are 3 here. So, we have 45 possible combination to test

and we might have more parameters here and it can the number of test cases can blow up. One

possibility is that we might try the pair wise testing.

(Refer Slide Time: 16:16)

So, if we draw the diagram here for pair-wise testing. So, if we have a class hierarchy like this and

m, these objects can be placed in place of m. So, they can be bound, the method can be bound to

any of these. So, how do we derive the pair wise test cases?

So, please think about it, we had discussed about pair-wise testing some time back and we can use

the same context, I mean same concept here and derive the pair-wise test cases. The other

complicacy that arises is that unlike functions which do not have attributes permanently storing

values, the class attributes store values permanently and therefore, we can consider a class to be

having states.

(Refer Slide Time: 17:10)

A class can be represented; the state behavior of a class can be represented with a state model in a

procedural program. We could test it by method calling or a function calling another function and

all possible calls among the functions, we could test their integration, but here first of all, a class is a

unit of testing and when we try to test a method invoking other methods, we must also consider that

just testing a method all possible ways another method can be invoked is not enough. We have to

also test it in different states of the class, the states of the class is given by a state model and which

specifies how the object state changes upon method calls.

(Refer Slide Time: 18:34)

Whenever a method is called for an object, some attribute may change and therefore, the object can

change its state and therefore, we have to first construct the state model of a class and the state

model can be thus different states can be constructed by using equivalence class is defined on the

instance variables.

So, what we really mean that the instance variables of an object they actually define the states and

let us say, an instance variable can assume values 1, 2, 3 and in that case we might say that there are

three states when the instance variable value is 1 or 2 or 3. So, we can define equivalence classes on

the instance variables that is, those values for which the class remains in the same state they are

equivalent.

So, we can define equivalence classes and that will help us determine the states of the class and

once we have the state model Jacobson’s object oriented software engineering advocates that we

have to have test cases to cover all state transitions and not only that in each state all the methods

have to be tested. So, it is not just enough to test the methods once, we have all the states covered,

design test cases to cover all state transitions and then in each state we need to test the methods.

(Refer Slide Time: 20:43)

So, this is an example of a state model and we need to have the object assume different states

through the different state transitions and then we need to do full testing of the methods in each of

the states, but then if we have multiple classes to be tested each one has its own state.

(Refer Slide Time: 20:49)

How do we make each class? Assume different states different possible combinations of states that

is, very difficult problem because we are no more invoking methods on one class individually every

class, we are invoking a use case.

There are multiple classes we are just invoking method of one class and then the other methods are

automatically in invoked. So, we may not be possible, it may not be easy to traverse all possible

states in that case. So, the locus of the state control is distributed over the entire object oriented

application each class has it is own state model, but we are calling method of one class and

therefore, covering all the states of all classes may become difficult.

(Refer Slide Time: 22:04)

But whatabout test coverage analysis we had seen, test coverage analysis in the context of

procedural programs. We had seen that several instance of test coverage analysis starting with

statement coverage, condition coverage, branch coverage, path coverage and so on.

(Refer Slide Time: 22:19)

But, are those test coverage metrics hold in case of object oriented programs?Unfortunately no. So,

it is seen test coverage metric helps us determine the thoroughness of testing how well we have

tested by computing those metrics.

So, the test coverage metric is typically defined by how many elements of interest are covered, the

element of interest may be statements then we have statement coverage, the element of interest may

be a branch and then we have branch coverage and so on. If we think of it obviously, statement

coverage is not an appropriate coverage metric for object oriented program because we had already

said that even if a statement is covered in the context of the base class already covered once, but

then in the context of the derived class.

(Refer Slide Time: 23:36)

We have to again test it. So, just saying that the statement has been covered is not enough because

of the inheritance hierarchy and inherited methods which need to be retested therefore, just having

statement coverage each statement is executed once does not mean much because testing it, in the

sense in the context of the base class is no guarantee of the statement working correctly in the

derived class. It has to be again executed in the derived class and therefore, simple statement

coverage is rather meaningless in the context of () object oriented programs.

(Refer Slide Time: 24:33)

So, then what is an appropriate coverage criterion in the context of () object oriented programs?

These are still areas of research lot of results are coming out, but then we can make our own

inference about what can be a suitable test coverage metric for object oriented programs.

Now, what about the test process strategy? In object oriented programs, the methods tend to be very

short because that is the characteristic of object oriented programs, we write very short methods and

then we have these inheritance and then method collaboration across different classes and in the

same class the methods tend to be short and the complexity shifts from testing methods to class or

relations because the methods are short, small methods, bugs are not very likely to be there the bugs

are more likely to be there in the class relations association, aggregation, inheritance and so on.

In this context we have to test an object oriented program through its design model because the

class relations and so on are represented using a design model and therefore, the traditional code

based testing, white box testing is less significant for object oriented programs, what is much more

important is the design based testing what is called as a grey box testing is very important for object

oriented programs because bugs are much likely to be present in the class relations, which are

represented using a design model rather than in the method body itself. What about integration

testing? If you remember in a procedural program, we had a design hierarchy, the modules are

present hierarchically and based on that we have top down bottom of mixed integration strategies.

(Refer Slide Time: 26:47)

But, here unfortunately in an object oriented program the design is not hierarchical. The objects

interact in a very arbitrary ways. The integration testing strategies are also different we have thread

based integration. So, we integrate classes as required to respond to an event.

A method is called on one class and then it needs to call other class methods. So, we need to

integrate them, that is called as thread based testing or used based testing once a use case is

executed what are the methods participate for different classes we need to integrate those classes

and then the cluster testing. So, different classes which collaborate are integrated first, even the

integration strategies here are different from () procedural programs. So, we are running out of time

we will stop here.

Thank you.

