
Software Testing

Prof. Rajib Mall

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture – 19

Testing Object-Oriented Programs

Welcome to this session. In the last session, we were discussing about regression testing and we saw

that regression testing is an important type of testing, where we need to test the unchanged part of

the software after each change.

Typically the change occurs to only few lines of code and few tens of thousands of line or hundreds

of thousands of line of code does not change, but then we have to retest all those parts unchanged

parts even though earlier they had passed. The reason is the dependency, a change may induce

problems in the unchanged part because of the variable value propagation, some value which is

changed in the during change of the some few lines of code propagate through the software and

surface edge bugs in the unchanged part, and then we had seen that the set up test cases which are

originally used to test the software they can be partitioned into the obsolete or invalid test cases,

which we need to discard.

Then we have the redundant test cases which we need not as well run because they have zero

chance of detecting a bug because they test the features which are truly independent of the change.

And then we have the regression test cases which test those parts of the software which have some

dependency with respect to the changes software.

(Refer Slide Time: 02:45)

Now, let us see, what are the different steps through which we select the regression test cases, so the

major regression testing tasks are the steps in selecting the regression tests; the first thing is to

identify the valid test cases because as we said that after every change some test cases become

invalid, they need to be discarded. So, we have to first identify the valid test cases and out of the

valid test cases, we need to identify and ignore the redundant test cases and that leaves us with the

regression test cases and that is called as the regression test selection problem.

If the regression test cases are too many thousands then we might need to do minimization, where

we remove test cases which you do not really they are kind of duplicates and they do not really

detect additional bugs. So, the minimized set of test cases is as good as running the entire regression

tests and we might also do regression test prioritization out of the regression test cases that have

been selected.

We might prioritize them into 1, 2, 3, 4 with the highest priority given to those regression tests

which have the maximum probability of detecting errors. Why do we need to prioritize? We need to

prioritize because if you can detect the regression bugs earlier during testing then the development

team can get started and that will reduce our delivery time. We might have hundreds of regression

test cases and it may take a week to execute all of them and if we can detect that bugs in the very

first day, we might get the development team started on the testing.

(Refer Slide Time: 05:06)

So, that is the idea behind regression test prioritization. If we represent that in the form of a

schematic diagram, we first do the change analysis and based on the change analysis we find out

which part of the code is impacted, which part of the unchanged code is impacted and which part is

independent and based on which part is the impacted code and the test cases which run or execute

these impacted code, we make the regression test selection and then we run the regression tests and

report and retest the results.

(Refer Slide Time: 05:54)

Now, let us look at another important topic in testing which is testing object oriented programs. We

had said earlier that object oriented programs were introduced with the assumption that if we have

very good programming practices inculcated then the chances of bugs will be less, for example,

inheritance encapsulation and so on.

The different features of object oriented programming, they are known to be very sound

programming concepts and they potentially reduce the chances of bug reuse adjusting could reduce

development effort and at the same time they are also expected to reduce the chances of bug, but we

will be surprised to learn now that actually complicate the testing. They introduced new types of

bug which you were not aware in procedural code and therefore, we need different testing for

object oriented code. We cannot just use the same techniques we used for procedural programming

in object oriented code, we need different testing strategies.

(Refer Slide Time: 07:26)

Let us look at that, but before that let us have small a quiz on regression testing which we just

discussed. So, the question is that is regression testing applicable at unit, integration or system

testing is regression testing applicable to unit testing, integration testing or system testing, the

answer is that actually it is applicable to all this three levels of testing unit testing integration testing

and system testing actually regression testing is a different dimension of testing and therefore, we

cannot say that regression belongs to only one level of testing. So, level is one dimension and

regression testing is a different dimension of testing and it is applicable to all levels of testing.

(Refer Slide Time: 08:24)

Now, let us look at testing, how do we go about testing object oriented software? If you look at the

data that is made; research data that is made available a typical organization development

organization spends 50 percent of its effort on testing, the rest 50 percent on specification design,

coding, etcetera and the main reason behind spending such huge effort on testing is that the quality

of the software depends to a large extent on the thoroughness of testing and now the customers are

very quality conscious. So, if an organization releases software full of bugs and not only the

customers will reject that product, but also they will not buy products from that organization.

So, every organization spends significant effort on testing and in that context, the object orientation

was a welcome change when object orientation was proposed. In the initial years everybody

expected that it will substantially reduce the testing effort, the 50 percent effort that is being spent

may be reduce to 20-30 percent that was the expectation, but then as we self find out now that

object orientation actually complicates testing and may need more effort rather than reducing the

effort.

Let us look at what are the challenges of testing object oriented programs which did not exist in

procedural programs. So, here we have new problems, new types of faults and therefore, very

difficult challenges in testing object oriented programs which did not exist in procedural program

testing. The first challenge is that what is the unit of testing? If you remember the context of

procedural programs, we had said that a unit is either a function or a module.

(Refer Slide Time: 11:02)

So, the idea is that in procedural programs we test the units and as long as the units have been

thoroughly tested, we then concentrate on integration testing removing the interface errors through

the integration testing and then we do the system testing, but if you look at the analogy of a

procedure and a object program you might think that, if unit is a function in procedural program a

unit of testing in object oriented programs may be a method because methods are analogous to

functions, but as we will find out, no, it is not correct.

The other things is that the good features of object orientation, encapsulation, inheritance,

polymorphism, dynamic binding will investigate, do they help in testing, do they reduce the effort

in testing or do they make it more complicated and need to spend more effort in testing.

Let us investigate that issue and then let us examine the new type of testing here needed state based

testing and then let us look at what is the notion of test coverage analysis in the context of object

oriented programming and also the integration strategies that we had discussed in context of

procedural programming top down bottom up and so on, is not really appropriate here because these

are not really hierarchical designs clear designs these are only the objects interacting with each

other. So, we need different integration strategies.

(Refer Slide Time: 13:09)

First let us address this is a very fundamental question what is a suitable unit of testing for object

oriented programs because this is the foundation of any testing that we need to do first the unit level

testing. So, which units or which elements of the software we need to test independently and then

do the integration testing in the conventional procedural programs the unit is a function, but as we

will see just now that method is not really the basic unit of testing for object oriented programs.

The analogy, if we extend function to method to be unit of testing in object oriented program is not

really correct, we will see what the basis of making this claim. Actually, the basis of making this

claim is attributed to the Weyukar’s Anticomposition axiom, which says any amount of testing of

individual methods cannot ensure that a class has been satisfactorily tested.

(Refer Slide Time: 14:48)

Let see what it really means. So, that is Weyukar, actually the suitable unit for object oriented

programs is class, we need to test all classes in isolation and then finally, integrate those classes. So,

why is class a good unit of testing and testing the methods and then integrating will not work? So

the answer to that is that, if we just simply test the methods then we are not doing several things

correctly. One thing is that we have this class attributes which are shared between various methods.

We are not testing those just by testing the methods and also the classes typically have state models,

since they store data every class stores data the classes.

A significant state model that means that a class or an object can exist in a number of states and if

we test a method in one of the state it may be working correctly in one state, but it may not be

working when the class is in some other state. So, we need to consider the state model of the class

and how the objects assume different states and then we need to test the methods there. So, not only

that we have to test the method interactions through class variables but also we need to test the

states the methods at different states of the class.

(Refer Slide Time: 17:04)

The Weyukar’s Anticomposition axiom which is a land mark result in this area appeared in IEEE

transactions on software engineering in way back in 1986. The statement of his axiom is that

adequate testing of each individual program components does not necessarily suffice adequate test

of entire program. So, he says that if you just test the individual component that does not really

guarantee that the entire program will be working. If p and q are components, p has an opportunity

to modify the contexts in by q in a more complex way then that could be done by stubs during

testing of components in isolation and therefore, as long as p and q can interact we need to test them

together.

So, the interpretation of this axiom for object oriented programs is that we cannot consider methods

as even it is just testing methods and then integrating them may not be correct, we need to test the

classes it is the unit level and integrate the classes.

(Refer Slide Time: 18:28)

So, that is the first important result that class is the basic unit of testing for objects oriented

programs. Now, let us look at some of the object oriented features important features and let us see

whether they can help in testing or they create problems, hinder testing. First let us look at

encapsulation.

Encapsulation as we know is having the data in the methods together. Actually encapsulation is not

a source of errors, but then it is an obstacle to testing, why is it because due to encapsulation, we

cannot directly access the private variables of a class and therefore, a debugger it would become

difficult to find the values of private variables of classes because there are no methods which will

report and for the accessing this private variables you need to access it through methods, you cannot

directly access it and therefore, it is becomes complicated.

So, how does one overcome this problem several solutions are possible, one is state reporting

methods.

(Refer Slide Time: 19:59)

So, we might have additional methods in a class which report the values of these private variables

low level probes to manually inspect object attributes or formal proof of correctness techniques do

not really look at the variables, but proof of correctness techniques.

(Refer Slide Time: 20:36)

But the most promising way is the state reporting methods and normally this is the way

encapsulation is handled by the testers, they have state reporting methods and they overcome the

encapsulation problem and can check the values of the private variables.

(Refer Slide Time: 20:47)

Now, let us look at another important feature of object oriented programs which is inheritance.

Inheritance, we know that one of the important benefit of inheritance is that once a class has been

tested is working well we can add new features in its sub class and therefore, we reuse working

code do not have to write all that code it has been tested and written. We just add few methods of

class variables, but then the question here is that, once we have a derived class and it inherits many

of the methods from the ancestor classes should the inherited methods be tested in the derived class.

Surprisingly and unfortunately, it is mandatory to test the inheritance inherited methods retesting of

the inherited methods is the rule rather than an exception. Why is that because these were the

methods that were all tested in the base class to be working fine and we have just inherited them in

the derived class, why do we have to test them again thoroughly in the derived class? Let us

examine that problem.

So, this is a base class library member and we have derived classes and several hierarchies of

derivation and the methods, attributes here become available in students and then the students are

further attributes and methods. So, all that is inherited by these children classes and so on. Actually

retesting is necessary because of the new context of use in the sub class. So, that is basically the anti

composition axiom,again.

(Refer Slide Time: 22:59)

We will see this with some examples what we mean by new context of usage, but then we can say

that, if you observed that a method has behaved correctly at an upper level does not guarantee that it

will behave at a lower level and.

(Refer Slide Time: 23:30)

Let us look at some examples. Let us assume that this was the code here class A had this variable x

having value 200 and the invariant or the requirement on this variable is that x should always be

greater than 100 and then we had several methods here, which we are using this variable and they

were all maintaining this invariant that is the way the class was designed and they were working

correctly, but then some programmer they extended the class A and he did not really look into the

code just extended it and here he introduced the additional method that he needed m 1, where he set

the variable x to 1.

Now, once we had extended A into B, the methods which are inherited here, m, etcetera which are

working earlier will fail to work because the () invariant has been violated here. So, this is one

simple example. Let us look at another example, a class A had a method m which was in it is body

calling another method m 2 and m 2 was also defined in class A. So, both m and m 2 are defined in

class A and m 2 is called by m. Now, class B extends A, but then it has overridden method B, now

when m is called in class context of class B.

(Refer Slide Time: 25:30)

Then m is inherited here and we call m, m was working all right in class A. It was tested now for

class B object when we call m, it is class called in the context of class B and therefore, due to

polymorphism the call m will now, call B dot m 2 rather than calling A dot m 2 and therefore, it was

working well with m 2, but now on the same m is calling B dot m 2 and therefore, it may fail and of

course, when we have method overriding we have written a new method overriding a base class

method obviously, we need to test. So, the inherited methods we need to test and also the overridden

methods we need to test.

(Refer Slide Time: 26:22)

So, the original hope that the methods have been tested at base class will not have to be tested in the

derived class is not true. We have to test actually all those method which have been inherited from

base class.

We are just running out of time in this session, we will continue discussing about how to test an

object oriented program in the next session.

Thank you.

