
Software Testing

Prof. Rajib Mall

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture - 14

Dataflow and Mutation Testing

Welcome to this session. So far we had seen some basic concepts on testing and then, we had

looked at black box testing, various black box testing techniques and then, we had looked at some

white box testing techniques and we said that there are mainly two types of white box testing

techniques. One is coverage based and the other is fault based and we started looking at the

coverage based testing techniques. In the coverage based testing techniques, we looked at statement

coverage branch or decision coverage, various conditions coverage techniques and then, we had

also looked at path testing.

Today we will look at few more white box testing techniques. Let us get started, but before that we

will just like to see how much you have understood and recollect about the previous discussions we

had will just pose you few questions.

(Refer Slide Time: 01:33)

The first question is what do you understand by a coverage based testing? What is coverage here?

What is covered? So, to answer this question, you can check your own understanding. To answer

this question, a coverage based testing essentially is test execution covers certain program elements

or executes certain program elements and the program elements that we consider can be statements,

can be conditions, can be component conditions, can be paths and so on.

Now, let us look at one more question. What are the different types of condition coverage? What are

the different types of coverage testing that we have seen so far and here I hope you remember the

various types of coverage techniques. We have discussed statement coverage that was the weakest.

Then, we looked at branch and decision coverage, we looked at basic condition coverage, we

looked at basic condition with decision coverage, we looked at multiple condition coverage, the

MCDC coverage and the path coverage.

Now, the next question is how is exactly the coverage based testing carried out? What does the

tester have to do? Does he have to develop a graph for the program control flow graph and then,

design the test cases. This, if you remember we had said that only for very trivial program, we can

develop the test inputs that will cause the coverage of the program elements. For a practical

program, we do not really design coverage based test suites. We give test inputs, random test inputs

and then we have a tool which measures the coverage and we keep on giving inputs until a desired

coverage metric is achieved. May be our metric is 100 percent statement coverage, 90 percent path

coverage and so on.

Now, the next question is what do you understand by fault based testing? If you remember we had

said that there are () basically two categories of white box testing techniques. One is coverage

based technique where we try to cover or execute certain program elements, where as in the other

type of white box testing we introduced specific types of faults into the program and then, check

whether the test cases are able to detect them. If the test cases are not able to detect them, we

strengthen the test cases by adding more test cases. So, we have not really looked at any fault based

testing techniques till now excepting for the basic concepts.

Today we will look at the mutation testing which is a fault based testing. Now, the next question is

give an example of a fault based testing technique. This I think all will be able to answer. We just

said mutation testing in an example of fault based testing.

(Refer Slide Time: 05:42)

Now, let us recollect some important aspects of the white box coverage based testing technique that

we had discussed. We had said that the strongest white box testing possible is all path coverage and

all path coverage as you might remember is covering all possible paths in a program, but then we

had remarked that all path coverage is actually a very impractical criterion because in presence of

loops, there can be very large number of paths, millions or billions of paths may be there and it is

practically impossible to achieve all path coverage in the presence of when the program as loops

and then, we had looked at the weakest white box testing technique which is the statement coverage

and then, we had looked at the branch or decision coverage which is a stronger technique than

statement coverage.

We had looked at the basic condition coverage, where every component condition or atomic

condition is made to assume true and false values. We had looked at the branch and condition

coverage or which is also called as condition decision coverage which is stronger than both

condition coverage and the branch decision coverage and we had looked at the MCDC coverage

which is stronger than the branch and condition coverage. We had looked and discussed the basis

path coverage which we simply called as path coverage and sometimes, it is also called independent

path coverage in the literature and then, we had looked at multiple condition coverage which is

stronger than MCDC coverage, but then we said that multiple condition coverage can result in large

number of test cases.

When the number of atomic conditions or component condition in a composite condition or a

decision statement is large, specifically we said that if there are ten component conditions, we will

have 2
10

 test cases required for multiple condition coverage and if there are 20 or 30 atomic

conditions in a conditional expressions, then we will have a huge number of test cases, millions and

even billions of test cases required to achieve multiple condition coverage and therefore, the

multiple condition coverage is not really considered a practical testing techniques and normally, no

one insists that a program should be tested to achieve multiple condition coverage, but what

normally is practically important, coverage techniques are the MCDC coverage and the path

coverage.

So, normally when a program for commercially uses or uses by a large number of users is returned,

the tester tries to test with the objective of meeting both MCDC coverage and path coverage and

edge can be seen in this figure that both these are complementary test cases, sorry complementary

testing. What we had made, what do you mean by complimentary testing? We had defined it earlier

that achieving path coverage does not ensure that we have achieved MCDC coverage and similarly,

if our test suite achieves MCDC coverage does not mean that we have achieved path coverage.

So, it is a good idea if you are testing a program which is going to be used by large number of users

as most of the software industry, they test their program using two important techniques, the MCDC

testing and the path testing. Now, let us look at one more important white box testing technique

which is called as data flow testing.

(Refer Slide Time: 11:06)

Here in data flow testing, the main idea is that we have test cases such that the definition and uses

of variables are covered. So, the test cases are defined or we define paths through the program

based on what are the locations of definition and user specific variables. Let me just repeat that the

location of definition and use of specific variables define paths through the program.

This is unlike the path coverage which you had discussed where the paths were defined on the

control flow graph here. The paths are not defined on the flow graph control flow graph, but here

we looked at what how does the data flow or where are the data definitions and uses occur and

based on that we defined the path.

(Refer Slide Time: 12:20)

Just to give an example, let us look at this c program and here as we can see in statement two a is

assigned 5 or we say that statement 2 defines variable a and then we have statement 3 which a uses

of variable c, statement 4 as uses of d, but if you look at statement 5, we have use of variable a. So,

definition of variable a, occur in statement 2 and the variable a is used in statement 5.

Now, let us look at statement 6. In statement 6, we have both uses of variable a and also definition

of variable a because a appears on the LHS in addition to appearing on the RHS. Similarly on

statement 8, we have again uses of variable a.

(Refer Slide Time: 13:40)

So, here for every statement we define two sets. One set is called DEF S. If the statement number is

S, we define DEF S which is the set of all variables X, such that X contains a definition of X and

typically a statement at most defines one variable. So, the definition set of a statement will typically

be one variable whereas the uses set of a statement S can be many variables. The statement may use

many variables and it is possible that it can assign value or defines value of one variable. Now, let

us look at this example, a equal to b and here the statement number is 1. So, we write the DEF set of

statement 1 is a, and the USES set of statement 1 is the set b.

Now, let us look at second example. So, maybe I could have written DEF 2 because I am number it

as 2. So, DEF set of statement 2 is a. So, it defines the variable a, and the USES set of statement 2 is

both a and b because a and b are both used.

(Refer Slide Time: 15:44)

Now, we say that a variable X is live at a statement S1, the variable is live if x is defined at a

statement S and from between S and S1, there is no further definition of X. So, a statement S, a

variable x defined at a statement S is live at another statement S1 if there is no intermediate

definition of that variable.

(Refer Slide Time: 16:25)

Now, let us see with respect to an example if a variable is live or not. So, this is the definition of a

and this is the USES of a and there is no intervening definition of a and therefore, the definition of

the variable a is live at statement 5 and is also live at statement 6, but then it is not live. The

definition at 2 is not live at statement 8 because it has been redefined in statement 6, but the

definition of a at 6 is live at statement 8. So, from 2, the definition is live at statement 5.

(Refer Slide Time: 17:27)

Now, based on what we discussed, we can define a DU chain. A DU chain is a triplet consisting of

the name of a variable the statement at which it is defined and the statement at which it is live. So,

X is in the DEF set of S, X is in the USES set of S1 and there is no intervening definition of S, sorry

of X between S and S1. This we call it as a DU chain.

(Refer Slide Time: 18:15)

One of the simplest data flow testing is that all DU chains in the program must be covered. That

means that wherever there is a definition of a variable, the uses of that variable must be a test case,

must cover those two statements. So, this we said that there is a, this is the simplest data flow

testing. There are other data flow testing criteria, more advanced criteria, but we are not going to

discuss those, but just looking at the basic concepts of data flow testing and the simplest data flow

testing technique which is the DU chain coverage.

(Refer Slide Time: 19:10)

So, let us look at what will be the test cases required to achieve DU chain coverage. Now, let us

look at these statement where we have a block of statements B1 which define a variable a, and then

there are some conditions which use other variables. do not use a and the block B4. It uses variable

a. Now, there are other variables as well.

(Refer Slide Time: 19:54)

.

Based on that we can compute the DU chains for the example that we discussed, a is a variable

defined in block 1 and used in block 5 and this forms a DU chain. Now, assuming that X, the

statement is used in different blocks, we will have a large number of chains, but then we need only a

few paths to cover these chains because multiple chains can occur on different control flow paths.

Now, let us look at another white box testing technique which is the mutation testing and we had

said that mutation testing is not a coverage testing, but it is a fault based testing technique where we

introduce a specific type of fault into the program and then, check whether the test cases are

effective against that type of fault. If not, the test case will be augmented with additional test cases

to strengthen the test suite, so that the specific type of fault will be detected. Now, let us look at the

basic idea here.

(Refer Slide Time: 21:31)

In mutation testing, first we use certain coverage testing techniques and we have some test cases to

achieve coverage of some coverage technique. So, in initial test suite is designed using some white

box coverage technique we discussed. Now, once the initial testing is complete, the initial testing

may be mc dc testing or may be path testing or may be both and once we have tested using this, we

want to check if the test is really effective against certain type of bugs and we carry out mutation

testing.

The main idea behind mutation testing is we make small changes to the program and when we

changed a program that essentially means a bug. So, the original program written by the

programmer we make small changes to that. May be we changed an arithmetic operator from plus

to minus or maybe we changed the type of a variable. These are some examples of small changes to

a program and each small change to think of it is actually a bug, a type of bug.

So, now we run the test cases knowing that we have introduced a bug. We run the test cases again

and check whether this bug is caught. That means, some test cases fail signaling that a bug has been

introduced in the program.

(Refer Slide Time: 23:30)

So, that is the main idea here. We insert fault into a program by constructing a mutated program. A

mutated program has a simple bug and now, the test case is run and it may be quite straight forward

to run the test cases. If we have a record and play tool, we just effortlessly run all test cases and

check whether all test cases pass or some test cases have failed.

(Refer Slide Time: 24:08)

So, the terminology that we discussed here one is a mutated program. Mutated program is one

where we deliberately introduced some minor fault and the type of change we apply is we call it as

a mutant.

(Refer Slide Time: 24:35)

Now, if we have this mutated program and we run our test cases and then, some test cases fail, then

we know that our test cases are actually testing well, they have caught the bug we introduced and

we say that the mutant is dead, that means these type of bugs our test cases is able to detect and we

might try new bugs to check whether the test cases are detecting those, but then if all test cases pass

and we know that we introduced a bug, then our test cases are not good enough. We need to

augment our test cases, add additional test cases until the bug that we introduced gets caught.

(Refer Slide Time: 25:37)

So, if the test cases pass for a mutated program, we say that the mutant is alive and that is the

terminology used in mutation testing and then, we designed additional test cases, run further test

cases until a test case fails flagging the bug that was introduced. So, one advantage of this mutation

testing is that generation of mutated program making small changes and also, running all the test

cases, both can be very easily automated and therefore, even though it is possible to generate a large

number of mutants or in other words, even though we can have tens or hundreds of thousands of

mutated programs, it is not a problem. We do not have to do it manually. We can generate all these

mutated programs through a tool and also, we can run all the test cases and check whether these are

passing or failing and therefore, the mutation testing technique is amenable for automation.

We will stop this session at this point and we will continue in the next session.

Thank you.

