
Internet Technology
Prof. Indranil Sengupta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture No. # 05
TCP/IP – Part-III

In our last lecture if you recall within our discussion on TCPIP. We had looked at some
of the fields of the IP header which are responsible for the fragmentation and reassembly
of packets. And finally we looked at well some issues regarding IP addressing; the
address classes are in this lecture. We shall be discussing the transport level protocols
that exist in TCP/IP.

(Refer Slide Time: 01:26)

So we would be primarily looking at some of the features of the two transport level
protocols in TCP/IP namely the Transmission Control Protocol TCP and the User Data
Protocol UDP. Now these being transport layer protocols, the basic idea is that the
applications which are running on the end hosts which you can treat as processes as
programs and execution. They will be interacting with the TCP/IP protocol suite by
sending receiving either TCP of UDP data depending on which of these protocols the
application chooses to use. But one thing to notice that, both TCP and UDP they sit on
top of the IP protocol. So both TCP and UDP will be generating the packets and
forwarding them to IP for delivering them to the correct destination.

(Refer Slide Time: 02:36)

Pictorially the hierarchy looks like this. Let us have another look at this diagram. So here
in today’s lecture we would be concentrating on this part of the hierarchy. The transport
protocols TCP and UDP. But the user processes will be sitting on top of them and the IP
protocol would be sitting below them. So this is where TCP and UDP exist in the
protocol hierarchy. Now first let us look at what are the basic purposes and roles of the
TCP protocol, the Transmission Control Protocol. Now one thing to notice that, the main
difference between TCP and UDP is primarily related to the kind of service that is
provides to the applications which are invoking them.

(Refer Slide Time: 03:40)

So TCP provides a so-called connection oriented reliable full duplex. Means bidirectional
and byte stream service, this means that the two end hosts will have to establish a
connection before data. Data communication can start communication is reliable reliable
meaning even in case of some failure, some packet loss TCP will try to recover from that
failure and regenerate the packet retransmit it if necessary. Full duplex means
bidirectional and byte stream means to the applications the messages which are sent and
which are received as if they are stream of bytes. But the point to notice that the
underlying IP layer which TCP uses for the actual transport of the data is unreliable and
also it is a datagram service which means it is connection less there is no concept of
correction establishment in the IP layer.

So the question is that how then TCP ensures that the connection is reliable the
communication reliable and there is a connection oriented service it does. So by explicitly
maintaining a few things, first a checksum to check whether a packet or whether a TCP
message is correct or not positive acknowledgements to send back information to the
sender that will all the data messages have been received correctly or some have not been
received. Time outs if acknowledgements do not come within a certain time. Then the
data is again sent is retransmitted and flow control. Flow control means if the sender is
sending data too fast the receiver can accept at that rate the receiver can send a request to
the sender, that well you please slow down the speed of transfer, this is called flow
control.

(Refer Slide Time: 05:54)

TCP in addition, since it is a connection oriented service it also handles establishment
and termination of connections between applications of process and sequencing of data
sequencing. Means at the level of TCP, say I am trying to send a message, it can be
broken up into several packets and they may be sent by IP. Now IP does not guarantee
any sequencing the packets may reach the destination in any arbitrary order. So what the
TCP layer at the receiving side must ensure is that although small pieces that constitute

the original message must be put together in the original order before they are forwarded
to the application. So application will have a feeling that the messages coming in
sequence in the order of bytes in byte order. They will not be forwarded to the application
in an out of order fashion.

(Refer Slide Time: 06:57)

Now in contrast the user data protocol or UDP it provides a connectionless and unreliable
datagram service. So in this sense UDP is very similar to IP. Because IP is also
connectionless IP is also a datagram base service. So now the question is that if they are
so similar what extra does UDP have over IP? Well in fact UDP provides two additional
things in addition to what is being provided by IP. The first feature is a checksum which
can be used to verify the integrity of the UDP packet. Of course this checksum is an
optional field. If it is not used the checksum field is set to all 0s. Secondly and more
important is that it keeps track of something called port numbers. These port numbers
will identify the processes at two ends because when UDP sends a packet to a destination
it is targeted towards a particular process or an application which is running at the
destination. So the port number in the packet will uniquely identify that which destination
this packet must go to. So if a port number was not there then all packets which are
targeted towards all applications running on a particular machine would reach that
machine and would be no way to find out which jacket should be sent to which
application. So port number is used specifically for that purpose.

(Refer Slide Time: 08:44)

So this exactly what I just talked about multiple user processes on a machine may be
using a transport layer protocols TCP or UDP at the same time. So when data packets are
received, they are coming to the machine there is a need for a mechanism. So has to
uniquely identify that which crosses the data packets need to be forwarded to.

(Refer Slide Time: 09:15)

Let us look at this diagram to illustrate. Suppose this box indicates a host on the internet
this is a computer. And inside this host, there are three processes; Process1 and Process 2
and Process 3 which are executing or running. Suppose we assign port numbers 10, 20
and 30 respectively to these processes. So when an incoming packet is coming to this

host it must also carry along with it the port number. So if it carries a port number of 20
that the packet will automatically be delivered to Process 2. If it carries port number 30, it
will be delivered to Process 3 and so on. So this simple illustration will help you
understand the importance of the need for having these port numbers. Port numbers will
uniquely identify the applications which on the hosts. Now port numbers are 16 bit
quantities. They are used to address an application and you recall IP addresses are a 32
bit quantity which identifies a host. In contrast the port number is the 16 bit quantity.

(Refer Slide Time: 10:41)

So both TCP and UDP use these 16 bit integers to represent port numbers and as I
mentioned that applications are uniquely identified by different values of the port
numbers. And the TCP or UDP packets will have the port numbers stored in their headers
so that the packets can be delivered to the correct application.

(Refer Slide Time: 11:13)

So just another look at this picture, in this hierarchy at the lowest level Ethernet here we
address with respect to the Ethernet address is 48 bits at the level of IP. We use the
internet address of the IP address 32 bits at the transport layer level. We use port numbers
to identify the application and this is 16 bits. So at the different levels of the hierarchy we
use different ways of addressing the entities at the lowest level who are identifying the
physical interface. At the next higher level we are identifying a host at the next higher
level we are identifying a particular application which is running on the host. Now in a
typical client/server scenario let us see what happens. Because this client/server scenario
is so common nowadays there is a server program which is running on some machine and
is providing some service to other so called client programs and the client program
running on another machine can send an explicit request to the server. The server
program will be receiving the request will do the needful and will be sending back the
response to the client of this is how the client server environment works.

(Refer Slide Time: 12:35)

Now let us see in the client server scenario by knowing the 32 bit IP address of the server
a client host can first establish a connection to the server. But not only this, in the client
server scenario, the appropriate server program the particular process must also be
identified. So the client must also know the corresponding port number. This means that
whenever you are you are working on the client server scenario and a client wants to
connect to a server you need to know the IP address of the server machine and also the
port number which will identify the particular process which is running on the server
machine. Say for example you just think of the World Wide Web the so-called HTTP
protocol. Now whenever you are using a browser you want to visit a site you first type in
either a site name or an IP address. There is a mechanism to translate a name into an
address that we would be talking about later. But in some way it is getting translated into
an IP address. But in addition in your browser setting somewhere it is set that if it is an
HTTP request by default set the port number to 80.

Because 80 is a number that identifies the HTTP server which runs on the other machine.
So in this way both the IP address and the port numbers are specified by the client of fine
among the port numbers there are such port numbers which are predefined and are made
publicly available or publicly known. For example port number 21 is used for the file
transfer protocol for transferring files between machines. Port number 25 is used for the
simple mail transfer protocol which is used in emails to these are just two examples there
is a big such list which can tell you the list of all publicly available port numbers which
everyone can use in order to contact the server or some particular machine. Now
information regarding these port numbers and the servers are stored in computer systems
in a particular directory. Because a computer must also know in some way that well port
number 21 corresponds to the FTP protocol and port number 25 corresponds to the SMTP
protocol. There is a particular file some where in the machine which contains all these
details.

(Refer Slide Time: 15:32)

These so called well known port numbers of stored in a file which on a UNIX machines.
This is stored in a directory under root etc services. Another example under the Windows
XP environment, it is stored in a directory like this under C Windows system 32 drivers
etcetera. In this file there are a set of lines or records. Now each line or records has the
format. So it starts with the service name, then the port number, then the protocol, then
the aliases. That means I can have some other names to the service names followed by
the comments. I will show an example in the next slide few lines of such a file we shall
be having a look now.

(Refer Slide Time: 16:27)

This is the content of the first few lines of the etcetera services files in an UNIX. The first
column, these identify the names of the services or the servers. You see here you have
some somewhere FTP, you have some SMTP and there are other also echo system
etcetera. Now you look at the other fields FTP it says. Here 21 slash TCP, this means
FTP protocol uses port number 21 and the TCP protocol this is a comment line. Just it
says that it is a FTP protocol, this is a control connection take some other example say
SMTP. First it says port number 25 TCP protocol there is an alternate name or alias. This
is called mail so instead of SMTP you can also refer to this service or server as m a I l
mail. Now you can see here some of the protocols also use the UDP protocol port number
7 UDP. So this is the kind of information that gets stored somewhere in each computer
system. So that when a particular packet comes just by looking at that file the operating
system can decide to which program the particular packet should be forwarded to.
Because the information about port number and also the protocol TCP or UDP that is
stored here fine.

(Refer Slide Time: 18:09)

Now there is something called ephemeral port numbers. Let us try to understand what
this is? Let us look at a typical scenario. A client process sends a message to a server
which is located on some host say at 1534. Now the server will have to respond back to
the client. The question is how the server will know where to respond. Because the server
does not know the port number of the client process and the server is well known. The
client is not well known. So what the client process will do? The client process will
request the local operating system for an unused port number. It gets generated these
unused and temporary port numbers are called ephemeral port numbers. These are purely
temporary. These temporary port numbers exist only for the duration of the current
connection after the connection is terminated the port numbers are withdrawn. So these
are purely temporary port numbers used on the client side. These are called ephemeral
port numbers.

(Refer Slide Time: 19:27)

Now with respect to port number assignment, well typically the port numbers starting
from 1 up to 1023, these are reserved for well-known port numbers. But some of the
applications today also extend this number up to 4095. But anything beyond this up to a
maximum of 65535. This can be used by a client program as ephemeral port numbers. So
you have a pretty large range of port numbers available for use on the client side and
these numbers are used as the ephemeral port numbers whenever the client wants to make
a connection with the server.

(Refer Slide Time: 20:13)

Now talking about connection establishment there is a hierarchical addressing scheme.
There are three things which need to be specified when you when you establish a
connection. First is the IP address of the two ends the source and the destination, next is
the protocol whether you are using TCP, UDP or any other protocol. The third is port
number to identify the processes at the two ends. These are the three things you need to
specify when establishing a connection.

(Refer Slide Time: 20:55)

Now when a connection is established we define something called an association. An
association is actually a collection of these 5 things. The protocol TCP or UDP, local IP
address, local port number, remote IP address, remote port number. Example of
association is this. This is TCP address, local IP, local port, remote IP, remote port by
dots. So this example this will these 5 information, this 5 components of this association
will uniquely identify a connection which is getting established. So when you say that a
connection has been established it means both the sides have come to know, all the five
components of an association only then the packets can be send and received with all the
relevant information.

(Refer Slide Time: 21:57)

So now let us have a quick look at the format of the TCP packet. The TCP header how
TCP carries out encapsulation.

(Refer Slide Time: 22:07)

This is the diagram that shows the TCP header, a TCP segment which contains source
port, destination port, sequence number, acknowledgement. There is header length; flags,
there is some reserved fields; window, checksum, urgent pointer and again there are some
optional fields here. Now let us very quickly see that what these fields are used for fine.

(Refer Slide Time: 22:09)

Source port and destination port are self-explanatory. Sequence number is used for
reliable communication. Now you are trying to transmit a message, now a message may
not be transmitted in one go. It may have to be broken up into smaller pieces and several
TCP packets may be generated corresponding to the same message. So what TCP will
do? TCP will assign a sequence number to each piece of the message and that sequence
number will correspond to the starting byte numbered in the original message from where
that piece starts. So each bytes of message is assigned a 32 bit number, this is a byte level
addressing that is incremented sequentially the field holds the number of the first byte of
that particular TCP segment you are trying to send.

(Refer Slide Time: 23:40)

Similarly from the other side you have an acknowledgement number 30 bit which is sent
back the remote host is using this to acknowledge something. This contains the number
of the next byte expected to be received. This means if the sender has is if the sender is
sending the TCP segments one after the other, the receiver will receive the packets say up
to byte number 1000. So receive will be sending back and acknowledgement with
acknowledgement field value as 1001. So it says that 1001 is the next byte I am
expecting. So these acknowledgements help in TCP in knowing or the sender to know
that whether receiver has received all the segments correctly or not. And if not the
segments which has not been received correctly is transmitted again. So even case of
failure the failure is overcome through retransmission. Then just like the IP protocol we
have header length, field 4 bits. This also specifies the header length in terms of 32 bit
words.

(Refer Slide Time: 25:00)

Flags there are 6 flags on their purposes are various. But I am not going the detail; I am
just mentioning some of the some of the typical uses of this flags. There is a urgent flag
URG, this is set to 1, if this so called urgent pointer is in use well urgent pointer actually
points to some segment in the data which can contain some very important information
for the receiver. So if the urgent pointer is set to 1, the receiver can immediate take out
that urgent data and processes it immediately. And there is a SYN flag and an ACK flag
if it is one SYN is 1 and ACK is 0, this means this sender is trying to send a connection
request. If both are 1 which means the connection is confirmed there are, other
combinations also and FIN is another flag finish. When the sender has no more data FIN
equal to 1 is send to release the connection. That means now the connection can be
terminated.

(Refer Slide Time: 26:08)

There is a reset bit RST this is used to reset or to reject a connection request there is a
push flag this is used typically to indicate end of message. And there is another way
interesting field window field is a 16 bit window field actually TCP uses a kind of sliding
window protocol at the level of bytes and the window field indicates the current size of
the window. Say if the window field contains a value 5000, this means that the sender can
transmit maximum up to 5000 bytes without an acknowledgement coming back. So it
specifies how many bytes may be sent beyond the byte acknowledgement, this number is
called window advertisement. Now this number can be increased or decreased as per the
requirements suppose the receiver finds that the sender is transmitting data too fast. It is
not able to receive at that rate.

So now what the receive will do it will send back a TCP request to the sender requesting
it to reduce the value of the window. So if the window value is reduced then the sender is
prevented from sending data at that rate. So the rate can be increased or decreased by
appropriately setting the value of the window field. So if the value of the window field is
set to 0. This means the window will be closed altogether. That means the data
transmission will stop. Now this window field is actually used for congestion control the
network. If a segment of the network becomes congested, congested means the speed
goes down the buffer space gets filled up then the window size may be reduced through a
proper negotiation protocol. So that the congestion can be reduced, so this congestion and
flow control these are two things which are served by this window field in TCP.

(Refer Slide Time: 28:35)

And lastly there is checksum field which is 16 bits. Now the way it is computed is the
same as IP that the algorithm used the same as IP. You take 16 bit segments of the
numbers you take 1 complements sum and finally take the 1s complement of the result.
But the data on which the algorithm is applied, there is something to observe. Here this
check sum is applies to the entire TCP segment plus a pseudo header. Pseudo header
contains from information which are barrowed from the IP headers. Pseudo header
contains the following fields Source IP, address Destination IP, and address Protocol
Segment length. Now the purpose of including this pseudo header in this check sum
computation is that, suppose say IP is an under level service TCP knows that suppose by
mistake IP forward the package to a wrong destination host. So there at the final
destination when this TCP text sum is computed that error will be found out because the
IP address are different. So this feature of pseudo header is mainly used for protecting
TCP from miss delivery by IP. So some of the failure of delivering a packet to the correct
destination by IP is taken care of by using this pseudo header.

(Refer Slide Time: 30:30)

Now let us look at the UDP Protocol UDP Header format. As you can see from this
diagram, the UDP Packet structure is extremely simple. There is no fancy headers, only 4
fields are there Source port, Destination port, Message length Checksum and of course
the data. So in UDP the source port and destination port as usual meanings, Message
length will specify the size of the datagram in bytes. Now when you say datagram it
includes the UDP header plus data. Checksum is computed in the same way as TCP.
Same way means here also include the pseudo header, include all the fields of the IP
which are relevant for computing it and we use the same algorithm that taking the once
complement and adding. But the point to note in UDP this checksum is not a mandatory
field. You can also keep it optional this field will be set to 0 if it is not used. Now let us
try to observe one thing.

Now we have two competing protocols at the transporting level in the TCP level
protocols. Just to recall TCP provides you a connection oriented reliable service for the
transport of messages. UDP provides you connection less unreliable datagram service.
Now if you try to find out what kind of applications would be using which of these than
naturally you can say at well if you have an application which does not like to so any
rechecking out of its own it wants the under line network layer to provide all the
reliability it requires. Then TCP will be the choice for the application. But here there are
couples of things to know. See a particular applications if it uses TCP then it is true that
you get very high reliability, you get a connection oriented service in the sense that
before the communication starts, you have to explicitly establish the connection.

Now but the price of paying is that TCP is not a very efficient protocol, TCP is you can
say relatively high overhead protocol it is relatively slow. But if you have some
application, but the size of the messages are not very large they are small enough. So that
they can fit into a particular package then you may choose to use datagram. But here the
point to notice that the application should be such if a few packets get lost in transmit

because UDP will never give you a guarantee of correct packet delivery. So the
application should be such that even if there is an error in delivery some packets are
getting lost either that loss can be tolerated or higher level protocol must explicitly keep
track of that. I am giving you two examples, there is one protocol. As I mentioned earlier
the Trivial File Transfer Protocol (TFTP) that uses UDP, but since the file transfer is an
important operation.

Even a small portion of a file, if it is not transmitted, you cannot tolerate that. So TFTP
exclusively keeps track of the portions of the file of the transmitted and which of the
portions not been transmitted correctly. Take an another example say for example Simple
Network Management Protocol, SNMTP is another protocol which is used to send some
kind of network statistics information over the nets. So that in a centralized locations you
can collect all the data and view the current health of the network statistically. In that
application even one packet gets dropped it does not matter because the packet is sent
ever few minutes or so it depends on the applications. So whether you really want to use
TCP or UDP. Now the next question is TCP and UDP are transport layer protocols 5.
Now we are saying that application layer protocols or applications are just sitting top of it
they use either TCP or UDP. Now as a programmer I may ask the question that well how
do I use TCP or UDP suppose I am writing a program in language like C, C plus plus,
visual basic anything. So how do I really use TCP or UDP?

(Refer Slide Time: 36:32)

Now the answer is to have some kind of a standard interface. This is one very standard
interface which people use. This is called Berkeley Socket Interface. Now the name
Berkeley Socket Interface, this has come because this interface was first you can saw
announced as part of the so called Berkeley socket distribution or BSD Unix. That was
the very well-known version of UNIX which was developed at Berkeley and the socket
interface was developed as a part of it. Now this Berkeley socket interface is a means for
accessing the TCP or IP services over the network. So now let us see that how we can

develop a network application. I am just giving you the outline. But it is the procedure to
follow. Well of course some standard and well-accepted protocols are the most desirable.
So in the modern day of computing at the data link layer level in most places we will find
that the Ethernet protocol is in use.

But of course there are installations you can find somewhere who had used some other
protocol like say FDDI or say ATM. Some other protocol which is not Ethernet. But
Ethernet is most common at the level of the network use IP. See this IP is important
because in today’s internet the whole internet infrastructure is sitting on top of IP. So if it
is not IP, then your packet cannot reach your intended destination where you wanted to
reach. So it is mandatory to have this IP infrastructure in place if you want to be part of
the internet and with respect to the standard applications at the transport layer level you
can use TCP; of course UDP is another option. But most of the application use TCP
because of the reliability it provides at the application layer level. We have used a
standard application program interface like Berkeley socket interface. Now in Berkeley
socket interface actually what happens is that here you as a programmer you are provided
with a set of application calls or depends a library functions.

Now using this library functions you can do a host of things. For example you want to
develop a connection oriented application. So you will have to first establish a connection
between the two ends. Now establishment of the connection, there are such system called
like socket bind accept and connect. So whenever a client wants to establish a connection
with a server, these are the function calls which have to invoke at the two programs
which are running on the two sides. So at the end of it the connection is established now.
Now when I say a connection is established, it means that the all the 5 components of that
association that I told you about the protocol local IP address, local port number, remote
IP address, remote port number. So all this 5 things are known to both the ends of the
communication. So ones this is so they can start the communication and whenever you
open this kind of a connection. You have something called a socket.

Now a socket is very similar to file in terms of its usage. Now recall when you use a file
say in C like program first we have to open that file; you get file descriptor and using the
file descriptor you can do read and write from the file. Now here also a very similar
things happens in the process of establishing a connection something called socket
descriptor is returned. Now using the socket descriptor you can do a send or receive at the
two ends if the client makes a sent there must be matching receive at the server end. So
this send and receive go on as long as you need to it and at the end there will be another
system called shutdown or close for closing or terminating the connection. But for
connectionless application development, for example if you want to use UDP. There is no
concept of a connection establishment there is nothing called socket. So there also you
will be provided with certain system calls. But the system calls will be slightly different
sent to or received from.

These are the names of the two system calls which are available now. Now in these
functions you need to specify all the five components of the association as the
parameters. So when you are sending a UDP packet to another process in another

machine you have to specify all 5 components of the association as parameters. Now
using those values you are passing as parameter the UDP packet is constructed and is
sent. Similarly receive from will also get all the values from the other side and those
values you can read and you can find out from where the packet as actually come. So
using this Berkeley Socket Interface you can develop any kind of network application
which is running on a client server environment over the network and if it is based on
TCP and IP which Berkeley socket is so.

So this application can potentially run across any pair of hosts in the internet. For
example my client may be located here in my room, the server may be located in some
say means it may be located in US like when I browse the internet. I type in the name of
the site. Now the corresponding server may be located anywhere in the world. But sitting
here I am able to access directly this is because this application was developed on top of
TCP and IP. This is a standard which was maintained and followed. Now we have talked
about IP we have talked about TCP, we have talked about UDP. Now what would be
talking in the next few lectures is that well understanding that today’s network. Today’s
internet is based on IP. We want to have an better understanding that exactly how this IP
packets are routed and forwarded through the internet. So this we shall be discussing in
out next lecture. So here we come to the end of this lecture number 5.

(Refer Slide Time: 44:51)

But now let us have a quick look at the solutions to the question which we posed on our
earlier lecture.

(Refer Slide Time: 45:05)

So the first question was an IP packet arrives at a router with the first 8 bits as 01000011
but the router discards the packet. Now you try to understand what the first 8 bits in a IP
packet mean. Recall that the first field in a IP packet is the IP version the first 4 bits and
the next 4 bits will represent the header length. So in this example the first 4 bits 0100
this will actually indicate the version which is version 4 and that is correct. The last 4 bits
0011, this indicates the number 3. Now 3 means this is the header length for the total
header size will be 3 into 4 are 12 bytes. But this is an invalid number because you know
that a IP header must be minimum 20 bytes which means the second field it cannot be 3.
It must be at least five or more. So due to this invalid value of the header length field this
IP packet well be discarded.

(Refer Slide Time: 46:30)

Now the next question an IP packet arrives at a router again with the first 8 bits are given
this combination. But the question is how many bytes of options field are there in the
packet. Well here again the first 4 bits will indicate the version, the next 4 bit will
indicate the header length. Now in the example the header length is 8. 8 mean this will
indicate 32 bytes of header. But the basic IP protocol requires 20 bytes in the header and
in this calculation. We are getting 32 so the difference between this 32 and 20 namely 12.
This will be number of bytes in the optional options field in the IP header. So you
calculate the actually number of bytes in the header subtract the minimum well of 20.
You will get the size of the options field 12 bytes.

(Refer Slide Time: 47:37)

In an IP packet the value of the header length is 5 and the value of the total length field is
1000 decimal. How many bytes of data the packet is carrying. Well since the header
length value is 5, this means the size of the header will be 20 bytes. Now the total size of
the IP packet is 1000 bytes. So out of this 1020 bytes are going for the header. So the
remaining 980 bytes will be data fine.

(Refer Slide Time: 48:17)

4. A packet has arrived at the destination with the M flag bit as 0. What can you say
about the packet? Well here you recall that the n bit in the packet is used for the purpose
of fragmentation reason which is a more fragmented if M is equal to 0. It means that this
is not the last fragment of the original packet. There are more which follows, so if the M
bit is 0 which means that there are no more fragments following this. So here there are 2
alternatives if the packet was fragmented. Then this is the last fragment because M is 0.
But if the packet was not fragmented if it is the original packet in itself it will anyway
have the M bit has 0. So if the M bit is equal to 0, we cannot say whether the packet was
fragmented or not. What we can say is that if the packet was fragmented then this is the
last piece of the fragment. But you cannot say whether it was fragmented or not.

(Refer Slide Time: 49:32)

Now next question says that the M bit is 1, so here what can you say? Well M equal to 1
means this is a fragment because a normal packet can never have the M bit set to 1. M
equal to 1 means there are more fragments following. So the packet must have been
fragmented and this is not the last of the fragments. These are the two things we can say
so the packet has been definitely fragmented and this is not the last fragment these are
two things we can say.

(Refer Slide Time: 50:22)

So a packet is arrived with the M bit as one and also the fragment offset field as 0. What
can you say well a fragment offset field as 0 means this is the first fragment M equal to 1

means that it has been fragmented definitely. So you can say that there has been
fragmentation and this is the first fragment next one.

(Refer Slide Time: 50:51)

This says that the fragment offset field is 500 then what can you say? Well fragment
offset is 500. Means that you recall the fragment offset field is specified in multiples of 8
bytes. So with respect to the original message if this is the original message and suppose
the present fragment accords here in the original one, then this offset value will be 500
into 8 or 4000. So the starting byte number of the fragment with respect to the original
packet will be 4000.

(Refer Slide Time: 51:28)

Now a packet has arrived at the destination with the header length as 5 fragment offset
150 and the total length field has 2000, then what you can say. Well since the fragment
offset is 150 we can say that the first byte number is 150 into 8, 1200. The header length
is five means 20 bytes of header, the total length is 2000. So you can say 1900 and 80 so
many data bytes are there. Now since the first byte number is 1200, so the first byte in the
packet corresponds to 1200, the last byte corresponds to 1200 plus 1979 which is 3179.
So with respect to the original packet, the present fragments beginning byte position will
be 1200, the last byte position will be 3179, this is what we can say.

(Refer Slide Time: 52:29)

Change the following IP address from binary to dotted decimal, this is easy you take each
of these 8 bit chunks covert them to decimal and write the numbers separate by dots. Find
the error in the following IP address. Well these decimal numbers correspond to 8 bit
binary strings. Now an 8 bit binary number can have a value unsigned value from 0 to 55.
Now this IP address notation has a number 256 which is invalid so this is not a valid IP
address.

(Refer Slide Time: 53:10)

Find the class of the following IP address. Well because it starts with 227, you can easily
see it is class D address. Given the network address 135.0.0 find the class network id and
the range. Since it starts with 135 it is class B. The network id for the class B are two first
octets 135.75 and the range will be for the host part we apply all combinations starting
from all zero upto all ones this is the range.

(Refer Slide Time: 53:50)

Given the network address this find the class network id ranges same. Now 216 means
class C. Now for the class C the first 3 octets will be the network id and the range the last
one can be starting from all zero upto all ones this is the range. What do the following IP

addresses signify? Well 144.16 means a class B address 255 in the host part means it is a
broadcast address. That means this address means the broadcast all hosts on that
particular class B network, this is a directed broadcasted address.

(Refer Slide Time: 54:34)

Well an IP packet with 2500 bytes of data plus header passes through an IP network with
MTU of 500. How many additional bytes will be delivered now, 2500 header plus header
will become 2520. Now it passes through an IP network MTU 500 you can easily see that
a total of 6 fragments will get created. Now each of this IP fragments will be carrying a
20 bytes of header. So in the final destination 6 such IP packets will be delivered with a
total of 120 bytes of header. But the original packet had only 20 bytes of header. So 100
bytes of extra header information will be delivered.

(Refer Slide Time: 55:19)

So now very quickly let us look at some of the questions from today’s lecture.

(Refer Slide Time: 55:26)

What does the port number in a TCP connection specify?
Why it is necessary to have both IP address and port number in a packet?
Which of the layers TCP UDP IP provides for reliable communication both UDP and IP
transmit datagrams? In what ways they are different?

(Refer Slide Time: 55:50)

What are well known port numbers?
What are ephemeral port numbers?
With respect to a transport level connection what are the five components in association?
This we have discussed.
Why is the pseudo-header used in calculating TCP checksum? What are the different
fields in the pseudo header?

(Refer Slide Time: 56:12)

Well here is a question on TCP. Suppose that 5000 bytes are transferred over TCP, the
first byte is numbered 20050, what are the sequence numbers for each segment if data is

sent in four segments with the first two segments carrying 1000 bytes and the last two
segments carrying 1500 bytes of the data?
Now the first byte number is 20050 means the numbering will start from there 20050,
20051, 20052. This all this 5000 bytes that have been sent they will be numbered
accordingly. They will be split into 4 different TCP segments. So in this question we will
have to say that in this four segments how will be the byte numbing taking place from the
starting address the ending address this will have to find out.
What is the purpose of PUSH flag in the TCP header?
What is the purpose of the acknowledgement ACK flag in the TCP header?
If you are developing a network application on a reliable learn environment which of
TCP or UDP would you prefer and why?
So these are questions from today’s lecture. So as I had mentioned in our next lecture we
shall be talking about something related to routing in IP networks. How the data packet
actually flows through an IP network and finally finds their way to the ultimate
destination. Thank you.

(Refer Slide Time: 57:59)

Preview of next lecture.

(Refer Slide Time: 58:01)

IP Subnetting and Addressing.

So we will start our discussion on IP addressing and routing. So if we recall what we
have discussed in our last few lectures, we had looked at the TCP/IP protocol suite. We
had looked at the basic functionalities of the IP, TCP and UDP protocols. Specifically we
have mentioned that the IP protocol is responsible for the delivery of a packets from a
source to the destination through a number of intermediate nodes which are typically
routers. So we shall today look at some more details about how this addressing the level
of IP is achieved. So IP Subnetting and Addressing is the topic of our discussion today.

(Refer Slide Time: 58:59)

So we start with something called IP Subnetting.

