
Internet Technology
Prof. Indranil Sengupta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture No #29
Java Applets – Part: 2

In this lecture we shall be continuing with our discussion on Java applets. If you recall in our
earlier class we had mainly talked about the differences between Java applications and Java
applets and we had also looked at some of the examples how a Java applet can written, how
an applet can be included or embedded from within an HTML page. So today the first thing
that we look at is how to convert any arbitrary Java application to Java applet? Now this issue
is important because we had mentioned earlier that we have Java applications which can be
written to perform any arbitrary task, any sort of complex or sophisticated animation which
can be done using that program. But in order to be used along with a web page in the internet
scenario we need to convert that program into an applet which can be linked and also
downloaded along with an HTML document.

(Refer Slide Time: 02:01)

So let us see or look at this issue first. First thing to note is that it is not very difficult. Rather
it is straightforward to convert an application to an applet. We call it graphical because most
often than not we have graphical applications running on web pages. So the application that
we want to convert is most often a graphical application; an application with graphics. Now
the reason it is straightforward is that you know in Java, the classes that we use from which
the objects are derived they are all instantiated or they are all inherited from other super
classes or parent classes. Now in application or applet the classes that are used by default.
They all decent from the same parent class. That is why the way they work, the way they
function the methods they use they are somewhat quite similar. So you need have to make
much change or much modification to an application to make it work as an applet.
Specifically an Applet uses the applet class; an application uses the frame class. Both of
which decent from the parent class called Container. So essentially what I have told that

1

because of this we can use the same methods and we use the same user interface component
description in both the application and applet.

(Refer Slide Time: 03:47)

Let us now look specifically at the different steps we need to follow to carry out or affect this
conversion. First thing of course this I have already mentioned that in order to convert an
application to an applet you need to create an HTML file. Because an applet has to reside
along with an HTML document; from the HTML document you need to provide a link to the
applet which will be downloaded along with the HTML file. So the first thing you need to do
is to have an HTML file with an APPLET tag which will specify the name of the applet byte
code or the class file, the size of the applet window and other optional attributes which we
had mentioned in our last class. Secondly one characteristic of a Java application is the
existence of the main method.

Whenever you execute a Java application, by default it is the main method which executes
first; from the main methods you can call other methods. So in an application the main
method normally contains will contain some code to create a new frame object in which the
different graphical item or user interface components would be included. So it is the main
method which initializes the context under which the application has to run. But in an applet
the situation is slightly different. We do not exclusively call an applet just like a Java
application. So that there is no question of explicitly calling the main method. Rather the
creation of the applet and the initiation or the beginning of execution is done automatically by
the browser after the applet has been loaded successfully into the browser.

So, whereas for an application you need to explicitly type in a command to run it. For an
applet it is automatic. It gets downloaded along with the HTML file and as soon as download
completes the applet gets initiated or executed immediately by the browser. This does need
any user intervention. The main method when it creates a new frame object it creates to, it
defines the frame size for the applet. However here also you need to specify the size of the
window in which the program has to run. But here this information is provided by the

2

WIDTH and the HEIGHT attributes which are present in the APPLET tag of the HTML
document. This need be specified within the applet the size.

(Refer Slide Time: 06:59)

Third. An applet is derived from the class Applet. An application is derived from the frame.
So when you are converting an application to an applet instead of deriving it from Frame you
need to derive it from the Applet class. Fourthly you need to replace the constructor of the
Java application with a method called init. Just to recall the constructor of a Java class
represents a method having the same name as the class which is executed by default
whenever an instance of that class is created. Whenever you create an object, the constructor
class or the constructor method is automatically invoked and it is the responsibility of the
constructor to make or create all the initializations before the other methods can be invoked.
So in a Java application you have the constructor in applet you have an equivalent method
called init. So the constructor function has to be replaced by a function called init. So
whatever initializations you need to do which we earlier within the constructor, now it will go
inside init.

So an applet when it executes whenever the browser will create the object after creation the
method will be automatically called. Next there is an issue regarding the layout manager.
While any Java program you write, whatever graphics you create, that is created based on
some library based on a layout manager. Java application by default BorderLayout manager
while applet use the FlowLayout manager. So if you had an application which was written
assuming the BorderLayout manager, when you convert it into an applet which by default
uses the FlowLayout manager, you will have to explicitly specify that well. You do not use
the default layout manager. But rather use the BorderLayout manager. This can be done by
explicitly including the following statement in init method setLayout new BorderLayout. This
will be overriding the default layout manager in the applet.

3

(Refer Slide Time: 09:45)

Applets have no concept of title bars. So if there are any setTitle calls in application, just
remove them. And lastly you import the library java.applet.star at the beginning of the
program to include methods that are applicable to applets.

(Refer Slide Time: 10:10)

Let us now look at an example which will illustrate the process of the conversion. Now the
example that we take is as follows. The Java program will be creating a set of menu buttons
which will be displayed inside a frame. The buttons will be labelled with different colors like
Red, Blue, Green and White. And the purpose of the button is that if you click a particular
button with a mouse the background color will get changed to that particular color. So this is
what the program is given to you. We will start with an application then we shall see how the
application can be converted into an applet. Let us look at the application first.

4

(Refer Slide Time: 11:04)

So an application name of the Java program or the Java class file here, we have assumed to
ButtonDemo. This extends Frame. So by default it is a Frame class from descends. This is an
example of the constructor object we had mentioned. So it is a method having the same name
as the class ButtonDemo. So whenever there a method with the name same as the name of the
class file, that is constructed or this is considered as the constructor and whenever you are
running the application, this method will be called first. So here you see what is there in the
button demonstration? First line there is a title Button Demonstration. This will appear at the
top. You create or specify layout manager FlowLayout manager. You add four buttons on
your screen, on your frame with labels Red, Blue, Green and White. So this new button, this
will be creating a new instance of a button with the label Red and add will be creating that
object button on the current frame being displayed. So this is the constructor method.

(Refer Slide Time: 12:41)

5

Then comes the event handler. So this is a public Boolean handleEvent. This is an event
handler method. So if you are closing the window, this will generate the WINDOW
DESTROY method. So this event handler simply says if the event die, if the id of the event v
dot id is this, Event.WINDOWDESTROYER which is the type, then you exit with an exit
code of zero. Otherwise if it is some other event you return to super.handleEvent, that means
you are recursively calling the parent object from where this object was derived? So that you
are saying that I will not handle the event myself. I will leave it to my parent to handle it. And
this method action by default is called whenever some kind of an event or an action takes
place. Like for example I am pressing the mouse button. So I want whenever I click on one of
the buttons of the mouse, I need to change the color.

So it is this action method which will be invoked whenever I press the mouse button. Here if
you look at the function it, takes as argument the Event and which Object was clicked or on
which Object this Event took place. But is the type of object, you check if the idea or name of
the object. This you can check using the equals function if. But dot equals Red is true which
means you have clicked the Red button, then you call the method setBackground with
color.red, you set the color attribute to red. Else if you click Blue then you set it to blue and
so on. So if it is none of the valid buttons some other then you return false. Repaint is a
function which will allow you to refresh the window so that whatever color you have selected
the window will get refreshed with the new color so that the changed color in the background
will be reflected immediately.

(Refer Slide Time: 15:15)

So this is how the application will look like. And finally you have the main method which
simply creates frame ButtonDemo is the name of the class. It specifies the size of the frame
300 by 300 and show is a method which is called to actually display. The Java application on
the created frame. So now the Java application is starting when you are invoking the method,
show actually the Java program starts running. This is how the application is now we want to
convert this application into an applet. Let us see.

6

(Refer Slide Time: 15:52)

So after conversion, the applet version looks like this. The first thing I told, we have added
this line import java.applet.star at the beginning. The name of applet you have given as
ColorApplet. Now instead of the constructor method we have given or we have created a
method called init which consists mainly the same set of statements which are there in the
constructor of the application, four buttons are created. Only thing was that you explicitly set
the layout manger here. This is what is done here.

(Refer Slide Time: 16:38)

The event handler and action they are same. There is no change out here. These methods are
already existing in the object of the class from where a frame or an applet is derived. So you
need have to change the event handler or action methods at all. They will remain the same.
The only change is that you do not add any title to it.

7

(Refer Slide Time: 17:08)

So now let us look at something called Applet Life Cycle. We have seen how an applet can
be written and applet can be created. Starting from a Java application which perhaps is
something which you have written to start with from an application. How to convert it to an
applet? We have specified the different steps to be followed also illustrated the process with
the help of a simple example. But even if it is some more complex example, you should be
following more or less the same sequence of steps. Now let us look at some very specify
methods that pertain to an applet. Only these are applet specify methods.

Now applet is supposed to be displayed as part of a browser. So there are certain events
which are specifically, you can say relevant with respect to the browser. Like I can close a
browser, I can open a browser; I can put one window on top of another window. So when I
am closing the browser. Do I need to still continue running the applet or I should suspend the
applet? Let it come up into my view again and it will again be started. So these are some
issues and these leads to some different states of an applet and so called applet life cycle. So
let us look at this so called applet life cycle now.

8

(Refer Slide Time: 18:42)

So when you are writing an applet as I had said there are methods that belong to the applet
class which are already there by default. We sometimes write our own methods with the same
names. That means we are overriding the existing methods. Now when you override the
method, for example, there may be a method already existing called paint or repaint. I am
writing the paint method again explicitly. So when I write I should be very clear about the
side effects. If I change or modify an existing method which was there as part the derived
class, what are the side effects I can expect to encounter. So the possible side effects I should
know. I should know when the methods are invoked and what kind of codes should be placed
in which method. Because I told in an applet there several types of standard methods
available and each of the methods have a specific purpose. So unless you when they are
called, why they are called? You will not be able to clearly tell that which code has to be put
inside which method.

(Refer Slide Time: 20:18)

9

So let us look at the methods first which applet specific. Now in the example that we have
seen we have already seen the init method. And we had told or mentioned that the init method
is invoked whenever the applet is started. Whenever the applet is executed on by browser for
the first time. So all the initializations that the applet requires with respect to the window,
with respect to color everything, with respect to the buttons and the other GUI components
you need, they will all have to be done by the init method. This init method you should
understand, this is called only once when the applet is loaded. So whatever code you should
put inside init, it should the code which is executed only once at the beginning and not
executed anytime in the future.

This you should understand. There is another method called start. The method start is invoked
after you invoke init. So this method is either invoked after init. Or as the starting point or the
resumption point of an applet after it was stopped and you want to restart it again. So a
typically situation when this might happen is this. Suppose I was displaying an applet as part
of a page web page on the browser. In the mean time I type in some URL and I go to some
other page or I click a link and go to some other page. So now the applet is no more on the
page. Now again from that new page I can press back, I can come back to my original page
which contains the applet.

So now the applet has to be resumed. So it is at this point we can invoke the start method
again. So the start method is invoked, every time we want to resume execution of the applet.
So simplistically speaking, every time the applet window is refreshed or the code is displayed
on the screen you have to invoke start. Say if a window was closed you are opening again. So
again the code has to be displayed. You are going to some page; you are coming back to the
page again. Then also you need to display. So under this situation where you need to display
the HTML document again, so under these circumstances the start method will be invoked.

(Refer Slide Time: 23:12)

There is a method called paint. This will be called every time the window is damaged. So if
you put one window on top of the applet window, again remove it bring it on top. So the

10

other window is damaged. The paint will be called which will be refreshing the window. And
update is a similar function method which first fills the window with the background color
and then calls paint. So normally you would be calling update it, will first initializing
initialize the window with the default background color. Then it will refresh the graphics
which is there using the method paint. Stop is a method which is used to temporarily stop the
applet from running. This is typically called when the browser moves to some other
document.

Suppose you type some other URL or click a link as I had said and some other document is
displayed on the browser. So during this time, there is no point in continuing to run the applet
which may be an animation applet. Animation thread which is a time consuming activity, it
will be consuming CPU time. So if the applet at all is not visible to us. There is no point in
continue running the applet there by consuming CPU time. Rather you suspend or stop the
applet till it becomes visible again. So stop is used to temporarily suspend the applet. Now
these activities can be restarted if we invoke start method again in the future.

(Refer Slide Time: 25:08)

And finally destroy is a method which is called, when you want to permanently remove the
applet from the memory. Permanently remove means whatever resources the applet might be
using including memory they will all be removed or relinquished. Now this destroy can be
called when you are using the closing the browser window all together. Or if the applet itself
there is an explicit button to close this application. Close this program if you click it. Then
the destroy method will be invoked and applet will be removed from the memory totally. So
these are the different methods and just what I said.

11

(Refer Slide Time: 25:55)

If you look at this diagram, this diagram summarises the same thing. The circular nodes are
the states of an applet and each edge or the state transition is labelled by a method. So from
the beginning whenever the applet starts the init method is invoked. So the applets start from
the initialization state to an initialized state. Then the start method is invoked. Now the applet
is running here. Now at this point, if you invoke stop, then it goes towards suspended state.
From this suspended state, if you invoke start again it comes back to the active state. If you
call destroy then the applet is removed from the memory. This is the terminate state and if
while executing somehow the window gets damaged you go to a temporarily state which
means active but damaged.

So whenever the window becomes prominent again you have to call update to initialize the
background color. Then to call paint to redraw the objects which are present in the window
again. So this simple state transition diagram summarizes the life cycle of an applet. What are
the methods which can cause state transition? What are the typically functions of this method
and when they are called? So with this understanding you will be in a position to know what
piece of code should be included or put inside which part the applet.

12

(Refer Slide Time: 27:46)

Now let us look at the situation when we want to put multiple applets on the same page. Now
earlier we have said that it is indeed possible to put more than one application in the same
page. It is also possible for them to communicate among themselves. One applet can send
some data to the other applet can send or can call a method and so on. Let us see through a
simple example how this can be done.

(Refer Slide Time: 28:20)

As I had said a HTML page can have more than one applet. Now we typically would want
these applets to interact among themselves. Which means one applet may have access to the
public variables and methods of the other applets. How we do this? We do this by invoking a
method called getAppletContext which gives us a mean which gives the applet a mean to
communicate with the browser. The browser will actually return when you make a call to this
and object of type AppletContext which actually is a pointer or a means to access the other

13

applet you wanted. From one applet, you can make a call to this method. You get an object of
AppletContext type using which you can access the methods and the variables of the other
applet.

(Refer Slide Time: 29:26)

Now this you can do by using the NAME tag in the HTML document when you are including
the applet. So the getApplet method of the AppletContext, also we shall see an example that
how we can refer to an applet like this. But the constraint is that you can only carry out this
kind of communication between applets on the same page. One applet located on one page
cannot communicate with another applet on different web page. This is a constraint you will
have to remember.

(Refer Slide Time: 30:06)

14

All write the example that we look at is this. There are two applets we consider. One is with a
name GUI.class and other with a name compute.class. These two applets have been assigned
the names first and second in the HTML file using the name attribute. The GUI class is what
it does is it actually reads in the amount of money in Rupees. So by default it reads in a value
which indicates the money in Rupees. And it also reads in a currency type dollar, euro or
something else. The compute.class will actually read whatever data was fed in the GUI class
including the amount and currency type and will contain a method called convert which will
convert Rupee into the currency of the type specified. So the idea is like this. One applet
simply allows the user to type in the amount in Rupees and currency type. The other has a
method which can convert into the currency type specified. So the first applet will be calling
the second applet with the parameters the user has entered and the result that is coming back
will be used to display the result back on the screen. This is what this example will do.

(Refer Slide Time: 32:00)

First let us look at the HTML file. So the TITLE is currency conversion demo. There are two
applets the first applet GUI class, the NAME that we have given is first. Some WIDTH and
HEIGHT of this applet given. The second applet is not actually meant to be displayed on the
screen that so the HEIGHT as a token WIDTH and HEIGHT are given small numbers 10 by
10, Compute.class the NAME is given as second. This is just a dummy example so no other
HTML code is there. Now let us see what is there in the do Java program GUI class and
Compute class.

15

(Refer Slide Time: 32:41)

This is the GUI.java applet. In the GUI.java applet, what we have is this. First we have the
init method. Now in the init method we create a new panel. On the panel we set the layout
manager to FlowLayout. Then we add a little a label to the panel Rupees. Just alongside this
we add a text field of size 8 and add the text field to the panel. Secondly we add another label
called currency and another text field where the new currency is to be typed in. Here the
default WIDTH is 10. This also we add. So there are two, you can say two form elements
have been added in one of which I will be typing in an amount in the other I will be typing in
the new currency name dollar or whatever.

(Refer Slide Time: 33:54)

And then another field I am adding, this is the result; Result of conversion. So here the text
field I am assuming of size 50. This also we are adding and all these panels you are adding to

16

the bottom of the panel south. Now the Event handler is similar to the example we had shown
earlier. So nothing to say here.

(Refer Slide Time: 34:23)

And whenever some action takes place, whenever you click on something on the convert,
then this method gets to execute. Here you see what we are doing, r.getText. This we are
storing to x. If you go back you see the labels that you create the first label where you are
typing in the Rupee, the name of the text window is r. So here we write r.getText. So we read
the contents of that particular field store it into x after converting to integer, ASCII to integer
conversion. String y equal to nc, getText in the other field nc it is already a string it is the
currency type dollar baht. Or whatever I am typing there, so that as a string we are storing in
x and here in the third line we are invoking a particular method of the other applet. So first
we are getting an applet context; compute is the name of the second.

So we are creating an object of type compute. We are calling the getContext object. The
getApplet method of that with the name of the second applet as parameter. So it returns a
pointer to the second applet p. Now we can call. Here you see p.convert, x y we can now call
the convert method of the second applet with the parameters x and y and the third panel
element here which is result we are setting the result setText to a value. First the Rupee value
r getText will trim any spaces will be trimmed deleted concatenant to Rupees equal to; you
convert it plus, the amount you have typed in the nc part. So in this way you can actually, so
you will be showing here as 1000 Rupees equal to say 25 dollars. Something like this will be
displayed and r nc are private fields which are not to be accessed from outside.

17

(Refer Slide Time: 37:05)

Now the other applet the Compute.java looks like this. Where in the init function, it simply
creates a panel, creates some labels. All these are optional. You can omit all these things
because the second applet does not really require any kind of graphics. This is TextField
result. All these are again optional, these are not needed.

(Refer Slide Time: 37:27)

What is needed is this method called convert. It takes two parameters. If the currency type
equals, this string dollar then say you divide rupee by 45 and return it. If it equals the
Thailand currency baht. Then you divide by “1.2” or if it equals any other currency xyz. You
make the appropriate calculation. So in this way through if an if then else you can carry out
any arbitrary currency conversion based whatever currency type you have typed in. So this
simple example shows you how one applet can call some method of another applet, passing

18

some arguments and getting the back the returned result and using it for some subsequent
calculation.

(Refer Slide Time: 38:18)

So let us look at some more examples of applets. Some very specific things we first look at
how we can image files from an applet. Because this is something which is quite popularly
used we often find or see an op applet where some kind of a photo album is being shown
cyclically automatically. So how we go on changing the image being displayed on the screen
from a Java program applet. Let us see that.

(Refer Slide Time: 38:55)

Now when you are trying to display an image or an applet, first thing is that you need to
access the image file. So the image file you can retrieve using the getImage method. Now the
getImage method has two forms where you directly specify the URL, where you can get an

19

image file specified by the URL. Secondly you give a relative path and the URL is
subsequent to that string path. So the second form will be using this string to provide a path
relative to the URL. For example in the URL path you give HTTP www.iitkgp.ac.in is the
string path portion you give slash docx slash images slash a.jpg. So you can separate these
two components out of an URL. So as to make your program look more structured instead of
typing a very long URL’s every time. So a typically use will be like this because the
advantage is that this URL a need not be typed every time because if you call the method
getDocumentBase then by default it will return the Base URL of the current document. So the
string path can be specified like this, images slash logo.gif with respect to the Base
Document. So this is a typical use of this function.

(Refer Slide Time: 40:45)

Now here we show an example where two images are displayed alternately in response to
some window event. Now window event means some event that is occurring on the window.
So either where are clicking the mouse on the window or we are closing a window opening it
again. So suppose initially, this on the window, the image 1 was displayed, I close, open it
again; I see that now image tool is displayed. I close and open again. Again I see image 1 is
displayed. So this will continue happening. So first the HTML file. Here in the HTML file
you see here I have the APPLET the NAME of the code ImageView.class size I have
specified the size will be approximately equal to size of the Image and the two image files are
specified as parameters. So in order to make the applet program general these parameters are
passed from HTML. So for the first one, the NAME of the parameter is M1 and value is
face1.gif, for the second one, NAME is M2 and file NAME is face 2.gif.

20

http://www.iitkgp.ac.in/

(Refer Slide Time: 42:12)

Now let us look at the actual code. The code fairly simple. This is the class ImageView. So
here we have Boolean flag which we have initializing it to true. This flag actually indicates
that which of the two images will be displayed. The way the program is written is that if flag
is true, then one image will be displayed. If flag is false, then the other image will be
displayed. So flag is a Boolean variable which is used to keep track of the fact that which
image is to be displayed next. So x and y are two variables of type image. This is the init
method. This gets executed only once. So in this example what needs to be done exactly once
is to get the two image files get access to the image files.

So you call this get image function with getDocumentBase. And if you look at the previous
page in the PARAM with NAME M1, I am assigning the file name face one.gif. This is the
parameter value. So here I am calling the get parameter method to retrieve the value of this
parameter which will be face1.gif. Similarly in the second one it will be face2 gif. The two
files we have specified, you actually open the two images and assigning it to variables x and
y. This x and y are variables of type image. So in the init method we are actually opening two
image objects assigning one of them to x and other to y. This is what we are doing here.

21

(Refer Slide Time: 44:15)

Here this is the paint. So every time the window gets destroyed and it comes up, we need to
call paint. So every time you close the window and open it again, this is a window event.
Here this paint method will be called. So let us see what we are doing in paint. In paint, we
are comparing that Boolean variable flag. If it is true, then we are drawing x using the draw
image method. Parameters are x the name of the image objects the coordinate 0, 0 from
where in the window the image has to be displayed. And this represents in which frame or
window this means the current one. And we made flag to call separate so that next time when
you come you go to else part. Similarly the else part you are displaying the image y and the
then you are flag to true. So as this example shows you see this example also that if flag is
true you come here this x. If flag is false you come here display y.

So every time the window is closed you open it again the method paint gets invoked and
alternately once the image x other time image y would be displayed cyclically. So this is what
we wanted. That, two images they will be displaying simul means display alternately. So this
program you can generalize to handle any number of events. Any number of images which
will be displayed one after the other or any particular order. Delay maybe different, whatever
you can do using Java you can implement here. You can use some functions where you can
specify the delays. All these things can be done.

22

(Refer Slide Time: 46:20)

Lastly we will look at an example where we will show how we can include audio clips inside
a Java applet. This is another which we require or use, quite often as part of Java applet
which shows attractive web pages. So there are methods again existing for this.

(Refer Slide Time: 46:45)

There is method called getAudioClip using which you can retrieve or audio object from a
specified file specified URL. So just like image there are two alternate forms. The first form,
you can specify the URL directly. In the second form, you can specify the base URL and the
path relative to the base URL just like the image case. You have this getAudioClip method
which you will invoke in one of these two ways.

23

(Refer Slide Time: 47:26)

To play the audio clip you have loaded, you can use the play method. Play method again has
two parameters. You can either specify play URL or play URL. The base URL and the String
path. Of course another form is there which I have not shown here you can call play without
any parameter. This third form will by default play the audio image which was loaded
previously using this getAudioClip method. So if you already have loaded a particular audio
clip using getAudioClip you can just call plat subsequently. So the last audio clip loaded
would get played by default or you can specify the clip id as a parameter.

(Refer Slide Time: 48:21)

Some typical usages of the play function or as follows. Here you can either say, here the first
one, you create a variable of type audio clip and you get an audio clip by calling this method
getAudioClip with a call to the getDocumentBase which gives the base URL and the relative
path you get anthem.au. And then with this returned variable object you call play Anthem and

24

then dot play. So the last one will start playing or you can directly invoke play also
getDocumentBase and anthem.au. So in either of these two approaches you can play audio
clips. Now in this same way we have just shown a couple of examples to show that from a
Java when you are designing an applet, it is rather easy to include images audio clips as
examples. Now in an applet which is supposed to be there as part of a web page.

These kinds of requirements are essential because they help you in designing very attractive
web pages with multimedia contents. So in general you can have other kinds of contents also.
Like you can have an mpeg video clip; you can have a streaming video clip; you can have
any kind of content you can think of. Provided the appropriate library is available to you,
which you can include as an object and you can call the methods of that object to load it to
play it in whatever way you want. For example if you consider a video clip then the methods
that may be present under them would not only just be play. It can be fast forward rewind
position to a particular point, stop, pause, all these things. So all these methods will be very
much media dependent and Java actually has full support for almost all kinds of media that
are intended to be included as part of web pages.

So it helps you in designing web pages in a very convenient way. Now in our next lecture we
shall be continuing our discussion and we shall show that how Java also can be used very
easily for developing network applications. We shall see that how easy it is to write client-
side programs in Java. You can write a Java client, you can write a Java server, they can be
applets. One of them can be an applet; other can be a Java program running on the server.
They can communicate among themselves and the amount of additional lines of code you
need to write. For this is very small compared to an equivalent code you write in a language
like C or C plus plus say for example. So Java is also very suitable for network or internet
programming. This we shall see in our next class. So with this we come to the end of
whatever we had to discuss today. So now let us look at some of the solutions to the
questions we posed in our last class.

(Refer Slide Time: 52:21)

25

The first question was:
Why do we consider Java to be secure?
Now this we had already mentioned in your last class. I am again repeating because this is
very important concept to understand. Java programs are downloaded from some other web
site and we would expect that when you are downloading and running them on my client
machine. The Java program should not do any kind of harm or should not be able to retrieve
any sensitive information that might be present on my local file system. So Java programs
typically are not allowed to invoke any local executable. They are not allowed to access the
local file system. They can communicate with only the web server from where the Java
program was downloaded. They cannot communicate with any other server and moreover
since they have do not have access to the local file system they cannot access any sensitive
information that are present on the local file system. Like for example user name email
address or any other such information which are very personal centric which we do not want
to share with others on the internet.

(Refer Slide Time: 53:43)

What makes Java programs platform independent?
Now this we had mentioned that basically the presence of the Java runtime or the Java Virtual
Machine helps in making Java programs platform independent. Because Java programs are
compiled into a platform independent byte code format. Byte code format is platform
independent. You can freely copy them, you can freely download them over the internet byte
code is the same on all machines. But it is the Java Virtual Machine which has to be there on
your machine to make your machine Java ready or Java enabled. So if you have the JVM
installed on your machine. You can download Java byte codes and run them on you are
machine. And as I had said JVM or the Java runtime exist today on almost all computing
platforms that are in existence.

26

(Refer Slide Time: 54:46)

What is difference between Java byte code and Java runtime?
Java byte code is actually that intermediate code. This is the machine code of that
hypothetical machine which is generated by the j compiler. On the other hand, Java runtime
is the interpreter which executes the byte code.

What is the difference between a Java application and a Java applet?
This we have said repeatedly. Java application is a standalone program which typically is
executed in a standalone fashion where as an applet is linked to a web page it cannot execute
independently. It gets executed along with the web site in which it is executed along with the
web page. So the web page comes along with the Java. Java applet which gets displayed
along with the surrounding HTML code.

(Refer Slide Time: 55:46)

27

How can you pass parameters to an applet from the HTML page?
This we shall, we have seen already through examples that we can use the PARAM tag with
the NAME and VALUE attributes to pass the parameters and the parameters can accessed by
invoking the getParameter method.

(Refer Slide Time: 56:06)

Lastly, is it possible to invoke a method of some other applet from another applet on the same
page? Yes we have looked an example we had seen that we can use the getApplet method to
do so. The example which was discussed today illustrates this in detail. So now questions
from today’s lecture.

(Refer Slide Time: 56:33)

Why do we need to sometime convert a Java application into an applet?
What is the purpose of the init method?

28

What is the purpose of the start method?
What is the purpose of the paint method?
How can an applet A invoke a method of applet B where both A and B are included in the
same HTML page?
How do you change the displayed image on an applet?
So as I had said, in our next lecture we shall be continuing our discussion on Java
programming with special emphasis on how to write or create client-side applications using
Java. Till then, good bye.

29

