
Internet Technology
Prof. Indranil Sengupta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture No #22
PERL – Part II

We continue with our discussion on the Perl language and its features. If you recall in our last
lecture we were talking about the scalar and the array variables in the Perl. How it can be
used? Today we continue with what we are talking about.

(Refer Slide Time: 01:12)

We look at some of the other facilities or other you can say features that you can have in
association with an array. Let us start with sorting. Perl provides a very simple mechanism to
sort the elements of an array using the sort keyword. Default sorting method is we can sort
the elements lexicographically. Lexicographically means the elements of the array are treated
as character strings and they will be sorted in the order of the dictionary; in the dictionary
order. Dictionary sorting means lexicographic ordering. And the sort command by default
considers that all elements are a string. For example if you write a number 25 it will
considered as a string 2 and 5. So some example colors equal to say using the quote word
command you define this array as red, blue, green, black. If you write sort col another array
equal to sort colors. So the new array sort col will be this, will be sorted black, blue, green,
red. So this is the correct order of sorting lexicographic array.

1

(Refer Slide Time: 02:43)

But there is peculiar problem you will see, if you try to sort a number array like this, suppose
you had a number array which contain 10 2 5 22 7 15 and if you give sort command to sort
this array now, what you will find is that you will be getting the sorted list as something like
this which is not what you expect in a numerical sorting. But in lexicography order this is
because in dictionary ordering. One will always come before 2. That is why 10 15 the first
letter is one they will come before anything starting with 2 2 22 then 5, then 7. So the first
letter is 1, then 1, then 2 2 5 7 and so on. Now if you want to sort numerically there is a way
out also well will explain why this happens later. But for the timing lets look at the solution
take the same array of numbers, same command, but in between you write something more
curly bracket dollar a less than equal to greater than dollar b curly bracket closed this in
essence tells the sort command. That sorting has to be done in the numerical order. So if you
give a sorting command like this you will actually get the sorted list like this what you expect
after sorting.

2

(Refer Slide Time: 04:30)

Splice is the function which can selectively take out some elements of the array sometimes. If
you have an array from the middle you may want to take out or delete or remove some array.
Earlier we had seen using the push pop and shift this kind of functions you can access the
elements at the head and the tail. But what about the middle? Suppose I want to remove to
elements form the middle of an array, this splice function can be used to do that. So there are
three arguments to the splice function. The first argument is the array on which you want to
operate. Second argument is an offset which is actually an index number of the list
constituting the array at which you are intending to begin splicing or deleting and the third
argument tells you that how many number of elements you want to remove.

Let us take an example, colours red, green, blue, black, say this is the initial array then we
give a command like this. Splice this array colours 1 2. What this command will do? This
command will remove 2 elements starting from 1011 element is green, green and blue. This
green and blue these two elements will be removed from the array colors and if you assign
the value to some other array middle. Then middle will contain list of the elements removed
in this case green, blue right. So this is what splice does. Now let us come to a very important
feature of Perl. We will see that it really makes our life much easier for sorting certain kinds
of tasks. This is file handling because in the context we are just planning to use Perl in the
context of developing the server-side scripts, cgi scripts, there the handling of file is very
important.

3

(Refer Slide Time: 07:10)

First before going in to accessing regular files on disk, we first talk about how a perl program
can interact with the user by reading some data value from the keyboard. Now you may know
that many operating systems treat the keyboard as a special file. It is treated as something
called standard input reading from the keyboard is considered to be equivalent as reading
from a file called standard input. Similarly outputting on the screen is similar to writing some
data on a special file called standard output. So these are some well known features and
concepts which most operating system supports. So, Perl also does something similar. When
it is trying to read from the keyboard. It assumes that as if it is reading from a file standard
input using a file handle within angular brackets standard in STDIN. Now in Perl you know
in a language like C whenever you open a file a number or an integer is written which is
called the file handle all subsequent operations on the file are carried out using that number
that is called a file pointer.

That is actually technically called file handler. In Perl a file handle is indicated by enclosing
it with angular brackets. So for standard input the default file handle is STDIN. Just look at
this, code segment print enter your name, dollar name equal to within bracket STDIN. This
STDIN appearing on the right hand side simply means that it reads something from the
standard input and whatever you are reading goes in to the variable dollar name. This is as
simple as that print Good morning dollar name. This is interpolation, so this name will get
replaced by the value you have entered. But there is one thing to be understood here. When
you are reading something from the standard input. Say take this example you are reading a
name, so the user will type a name followed by the enter character the carriage return. Now
whatever goes in to the variable you are assigning it to the carriage return also goes along
with it.

So, here if you run this program you will see one peculiar thing. Just see this program like
this that if you give this print, what you are expecting? You are expecting that it would print
Good morning then the name of the person we just typed in slash n will move the cursor to
the next line. This s is not there, but we will see here is that it will go to next line all right.
But there will one additional blank line in between as if there are two newline characters gone

4

in right the reason is that the name itself had one newline character at the end carriage return
slash n. So there should be a mechanism to remove the newline character from the values you
are reading from keyboard before you can actually process or compare with some values. So
there is a need to chop off the newline character at the end.

(Refer Slide Time: 11:14)

There is a function chop which does exactly this, the chop function removes the last character
of whatever you have given it as a parameter it is a string. A string can be a number; it can be
string with some carriage, return at the end. The chop function does not check what is there at
the end whatever the last character it removes is. Blindly this is the function of the chop; it
removes the last character irrespective of what it is, for this specific case. Well in the earlier
example, if we look at the earlier example, you are using dollar name equal to STDIN. Here
we are doing the same thing, but we are enclosing it within the parameter of function chop.
Chop will do the reading; it will chop the last character whatever is read.

So the newline will go and you will be getting whatever you actually want. Now as I said for
this example it is but for many other examples you may not want that chop delete the chop
character blindly. Because in some cases there can be a newline character in some cases some
other special character also depends on the context from where the data you are giving as a
parameter to chop is coming be. Because this particular example says that you are taking
STDIN and then give a chop. That is, but if the data is coming from somewhere else, it is
possible that the carriage return is not there, (12:59 audio not clear) something else is there or
nothing is there. So this version of chop which you can is a safer version which does not
delete useful characters.

5

(Refer Slide Time: 13:15)

This is called chomp c h o m p. This is the name of version of chop where it chops of the last
character only if it is a new line. So the same program you can write by replacing chop by
chomp and this is a safer version of the program. In essence that it will only chop the last
character, if it is a newline otherwise it will not chop anything.

(Refer Slide Time: 13:51)

Now let us move on to the regular File Operations. Let us see how to open a file. Now a file
in perl can be opened by using the open command and when you open a file just like a when
you open a file using any other language using C, the open command returns a file handle and
as the previous example showed for standard input the file handle was this STDIN. Let us
take an example, here which illustrates file opening. Suppose this is file you want to open,
this is under home under isg and the name of the file is report dot txt. This we are defining as
a text and we are assigning to a variable fname. The syntax is open XYZ name of the file. So

6

after opening this handle XYZ is returned, while within angular brackets XYZ. See there is a
difference between XYZ and angular bracket XYZ or between STDIN and angular bracket
STDIN.

See STDIN represents a file or handle that is, it is standard input. Within angular bracket
STDIN means the contents of that file whatever is there. Similarly here this XYZ represents
the file handle, while this within angular bracket XYZ, this means the content. That means it
is reading from this file here in this while loop. So while will go on reading until the end of
file is encountered line by line and it is printing something Line number. These are special
variables $., $_, these we shall talk about later again; $. returns the Line number you are
reading and $_ represents a string which is the contents of the present line. Whatever you are
reading presently, that is stored in a temporary variable dollar underscore and the Line
number is contained in $. So if you look at this program here, now it will print all the lines
you are reading with a Line number $.

(Refer Slide Time: 16:56)

So this is the same program with a slightly different. You can say modification here. Here we
have added this thing. This means see we are opening this file. After opening you are
returning the handle, but you know while opening a file sometimes some errors happen. The
file name you are specifying there is no name. With that file somehow the file is locked by
someone else you are unable to open. So there can be an error message that can return in your
attempt to open your file and the error message has to be sent back to the user. Now this
construct in the open command does exactly that or die will be activated. Whenever there is
an error message and whatever is there in the quote that will be displayed will be displayed
on the standard error which is typically the screen. The Error in open colon $!. $! is again
another special variable. As you can see here dollar exclamation returns the error code or
message. As I said, $. returns the line number which starts at one and dollar underscore
returns the contents of the last match which is the contents of the last line. So this example
shows how you can just open a file and also handle errors.

7

(Refer Slide Time: 18:43)

Next comes Reading. Well after opening the file, how you can read the contents of the file.
Now the last example which we have shown to illustrate open also illustrates reading because
as I said that the angular brackets whenever we are using to enclose a file handle like this.
XYZ this angular bracket is actually the line input operator means that you use the file handle
XYZ to read a line of data and whatever you are reading, that data will go to this special
variable $_.

(Refer Slide Time: 19:33)

So let us look at this version of the program. So again here instead of reading, we are doing
writing the program is very simple. There is only one difference; first we are defining the
output file. The file name you are opening, but we are using a greater than sign before the file
name. This greater than sign, means that you are trying to open the file for output. So for
writing a file you should make sure that there is a greater than sign which is put at the

8

beginning of $ out or the name of the file. Whatever the name of the file can also be put here
directly no problem or die is a standard error message. If there is any problem in write there
will be error message displayed. Now the construct we shall be talking about for dollar I this
1.20 means this is a, for loop where the variable I will continue for up to 20 1 2 3 4 20 and
here we are asking to print XYZ dollar I Hello the time is scalar. Local time print XYZ
means here we are printing with the file handle specifier. That means you print not on the
screen, but on this file $ I, the line number will be displayed Hello the time is we also learn
that the scalar local time is built in function in perl which gives you the time. So actually
what will get on the file, there will be 20 lines where the time is continuously displayed as the
program executes. So this is just an example how you can write in to your file.

(Refer Slide Time: 21:39)

Writing to the end of a filer or appending is almost identical. The only difference is that
instead of greater than sign, we use double greater than sign. This is the only difference.
Double greater than means append. That is all the rest of the program is identical.

9

(Refer Slide Time: 22:07)

Finally when you are done with your reading, writing or appending whatever we have to
close the file. Closing a file, you can do using the close command close XYZ, where XYZ is
the file handle.

(Refer Slide Time: 22:25)

Printing a file is very easy in Perl. This shows an example suppose I want to print this
particular file home isg report.text. So I store it in a variable, I open it, IN is the file handle
will in with the file input operator. This angular bracket I give this while IN means whatever
comes in it gets stored in the default variable $_. Now dollar underscore is a default variable,
this you should remember suppose I give a print statement without any thing to print by
default it will take $_. So you just look at this program. This while IN will read the values
with the variables $_, one line at a time and this print statement where you have not specified
anything. This print statement will be printing values of $_ continuously line by line. Finally

10

when it is done close it we see that just printing the contents of a file is very simple to do. In
Perl you can do it very easily.

(Refer Slide Time: 23:53)

There is something called Command Line Argument. Let us also have a look at this. Perl uses
a special array called @ARGV. @ARGV actually means the list of arguments which are
passed along with the script name on the command line. What does it mean? See normally
when you run a Perl program (24:21 audio not clear) command line; you type Perl which is
the name of the Perl interpreter followed by the name of Perl program. But when you talk
about command line arguments we are saying that when you are running it in addition we are
specifying something on the same line red, blue, green, this can be some additional
parameters. This is a very common thing you do whenever you say. For example you compile
a program, there are so many compiler flags are used as an optional command line arguments
instead of parameters. So this example shows you how you can have access to command line
parameters for your giving a command to run a Perl program.

Now this ARGV is a special array it says that after the command and file name whatever you
have after that red, blue, green, the array ARGV will contain exactly that right. So if you
write a short program like this, all these construct we will see later again for each within
parenthesis at ARGV. This means that you take all the elements of ARGV one at a time and
again when you take it one at time the default will be there in $_. You print either simple
print or print $_ explicitly reverse n. Because if you had printed only print then all the things
should print in the same line. This new line would not come if you want to print one in each
line, then explicitly you have give dollar underscore followed by newline. So this small
program snippet will print the contents of ARGV one in each line s.

11

(Refer Slide Time: 26:17)

Some standard file handles we have already talked about a couple of them. This STDIN
refers to the standard input which usually means the keyboard. STDOUT, standard output
which usually means the computer screen. This STDERR is the standard error; this is used
for outputting error messages by default. This is also the screen and ARGV as have just
mentioned this represents the command line arguments. It reads the names if the files from
the command line and opens them all.

(Refer Slide Time: 27:01)

See here there is something to understand. See suppose I give a command to run a program.
After that I give some command line arguments X Y Z. That said this X Y Z as a list will go
in to the ARGV array right. Now there is a difference the array ARGV and the file handle
ARGV. See array ARGV we represent by @A R G V and the file handle ARGV you
represent as within angular bracket ARGV. There is a very distinct difference between these

12

two notations. This, array ARGV in this case will contain simply X, Y, Z, the list of elements
that you have supplied. Now when you are accessing ARGV with this angular brackets then
you are assuming that X, Y and Z are names of some files. So this angular ARGV will start
reading from this file itself directly and if no file is specified and still you are trying to use
ARGV. Then by default it will start reading from the standard input. Now this, a very
commonly used feature that is why some times instead of explicitly using ARGV. You can
use an abbreviation just the angular brackets with nothing in between. There is a small
example to show.

(Refer Slide Time: 28:56)

Line number equal to one, while means here you are reading from ARGV. Print line number
and print. So this program will print the contents of the file you are passing as an argument.
Suppose you are running the program like this, then your array ARGV will be file1.text and
within angular bracket ARGV means contents of file1.text that would be read one line at a
time. Similarly for the next one the contents of a .textb, .textc, .text all will be read one after
the other. So this program will display the contents of all the files you have specified in the
command line. As you can see in Perl, you can do such a complex thing in such a simple and
easy way. This means actually is the power or beauty of Perl you can do. So many complex
things including string handling in a very easy and convenient way. So before going further
into d, other constraints and the other interesting things about Perl. Let us look at some of the
very standard things like the control structures. Just have a quick look at the Control
Structures which Perl supports.

13

(Refer Slide Time: 30:25)

There are many control structures which are similar in syntax to those in the language C. We
would mainly be showing them through examples. There are constructs like for, foreach, if,
Else, some small variations while, do, etcetera. So we shall see that what these constructs are
you may be familiar with the names. But how they can used in perl this we shall see.

(Refer Slide Time: 30:58)

First we talk about a statement block whose definition is identical to what is there in see. So a
statement block is a sequence of statements which are enclosed in matching pair curly bracket
open and curly bracket close. Just an example if year double equal to 2000 curly bracket
print. You have entered new millennium, new line. This looks very much like your C
program segment only. The syntax of the print is slightly different. Blocks again like C may
be nested within other blocks.

14

(Refer Slide Time: 31:45)

Now when we talk about conditional statements, say if then else normally if condition, then
else something we are evaluating. If it is true we are taking some decision, if it is false we are
taking some other decision. Now let us try to understand what is meant by true and what is
meant by false. Now in some language the zero value is treated as false and any non-zero
value is treated as true. Let us see what is the convention followed in Perl. In Perl, there are
three things which are considered as false. The value zero, if it is a string; the empty string, if
it is undefined variable; the undef value. Everything else in Perl is considered TRUE.

(Refer Slide Time: 32:42)

Let us start with the syntax of the if else statement. The general syntax is if within brackets,
some test expression within quote else within quote. So this is identical to syntax in C.

15

(Refer Slide Time: 33:00)

Some small examples, but there is some small difference as this example will tell you the first
example. Here we are comparing a variable with a string using the comparison operator eq
whether this is equal to isg. If it is so, then we are printing a welcome message, else you are
printing some other message. The second example, this shows two things. First it shows that
that we can use if statement without else also else block is optional. Second thing is in this
case we are comparing a variable with a number. You see here the comparison operator
instead of eq we used the C like double equal. So this also tells you that the operator we have
used for comparisons. For these kinds of statements differ depending whether the numbers or
elements you want to compare are numbers or strings for equality. For example equality
check numbers use double equal, for strings we use eq, the elseif, elseif is a variation you can
have along with the if statement.

(Refer Slide Time: 34:44)

16

Just a simple a program segment I am showing, it starts with a print, Enter your id and you
are reading some user id from the keyboard. User is entering and you are using chomp to cut
of the new line. Then we are comparing whether the id is isg, bkd or akm and accordingly
you are welcoming the corresponding person. If dollar name equals isg, you are printing
Welcome Indranil elseif, elseif is a keyword. If it is equal to bkd you are welcoming Bimal
elseif, if it is akm you are welcoming Arun, else you are printing with a Sorry message. So in
this way if then else is quite similar to the C syntax. But there is some small difference. This
elseif must be together no space in between.

(Refer Slide Time: 35:40)

So these are standard features. While well I am not trying to explain the syntax of while
because this is very similar to that in C. But rather would like to show an example where the
context in which such a while statement is typically used can be illustrated see in C. You can
use while statement to compute the factorial of a number. For example when you are
multiplying numbers in iterations but Perl is mainly meant for string manipulation. Let us see
how we can use while for string manipulation or some kind of string related operation. Well
this a simple application where I am just assuming that I have a secret word called India and I
am asking the person. The person whose is running this program to guess this secret word.

Now as long as the correct guess is not given the program continues running in the while
loop. So let us see first is that the choice the user enters is initially set to null and the secret
word is India. There is a while statement while your choice not equal to secret word, for the
first time it will obviously not be equal because one is India then print Enter your guess.
Chomp your choice STDIN, so you are reading the choice from the standard input and you
are continuously comparing in the while loop if it is equal or not equal to the secret word.
Now as soon as these while loop condition is false there are equal it will come out and will be
printing a message Congratulations Mera Bharat Mahan.

17

(Refer Slide Time: 37:52)

For syntax is similar to C. But you can use for in a number of different contexts you can see.
This example shows the context where the usage is identical to that in C. We use a variable
dollar I we have initial value, the termination value and the increments and you can. Just use
the value of dollar I (38:20 audio not clear). This is a simple example foreach.

(Refer Slide Time: 38:25)

Foreach is mentioned as a constant, as a construct which iterates over a list. Suppose colors is
an array which is defined as a list red blue green. If you give for each variable name within
bracket array, this construct means that you will be looping over all the elements of this array
since there are three elements red, blue and green. So you will be looping three times once for
red, once for blue, once for green and the current value that you are at this particular variable
will be getting that value. First this dollar name will get red, second time it will get blue,
second time it will get green. So within the loop your printing Color is dollar name. So the

18

colors get printed. But the thing to note is that although for and foreach had been mentioned,
as two separate construct or commands. But you can use them interchangeable. For you can
use here, foreach you can use in the previous case, but some of the Perl authors they have
provided some guidelines that you better use for those kind of application where you are
counting the number of iterations like in conventional for loops. We use foreach for this kind
of list based operations where you are accessing the elements of the list.

(Refer Slide Time: 40:14)

So let us take an example here. This is an example which counts the number of odd numbers
in a list. The first line defines the initial value of the array, defines the array. This at XYZ
equal to 10 15 17 28 12 77 56. This is the count value which is initialized to 0 which I am
counting foreach scalar array. So you are reading the numbers just storing them in dollar.
Number one at a time using the modulus operator I am checking if it is odd or not. If modulus
2 equal to 1, it means number is odd. So I am printing number is odd dollar number is odd I
am printing the actual number 15 17 77 3 such numbers are there and I am also incrementing
the value of the count. So after the loop is finished, number of odd numbers is dollar count.
Now if you basically put this inside this loop, then this line will be printed once for every
element as it did as it goes on counting. But if you want this number to be printed only at the
end total number three are found, then this parenthesis you have to give it before (41:50 word
not audible) then the print statement.

19

(Refer Slide Time: 41:55)

Now for breaking out of loop. Suppose you have a loop here some condition, based on
condition you want to come out of the loop there is a statement called last. If it appears in the
body of a loop will cause Perl to immediately exit the body of the loop and the condition can
be embedded along with the use of last like this. Last if I greater than 10, for example, so you
use a conditional element last if the condition is true then you exit the loop.

(Refer Slide Time: 42:32)

Similarly you may want to skip the body of a loop. For example you have a loop, this loop is
an iterative loop, this loop will go on. Say for example 10 times for iteration you are making
some check. If some condition is true or true then you want to skip the remaining statements
in the loop and continue with the next iteration not exit the loop. So you have a construct
called next here when executed the remaining statements in the loop will be skipped and the

20

next iteration will begin. So the usage of next is also identical you will have to use with a
conditional next followed by a condition. Now let us quickly look at the different Relational
Operators that is supported by Perl. As I said some of the Relational Operators are identical
to that in C. In some cases it is different because as we have seen in one example that the
operators we have used for comparison is different for numbers is different from string. In C
you can only compare numbers you cannot compare strings for strings you have to use string
comparison function string cmp or something, but here you can.

(Refer Slide Time: 44:05)

So the Operators Listed in a tabular form. Here there are 6 comparison operations. Equal, not
equal, Greater than, Less than, Greater or equal, Less or equal, for numbers these are identical
to what is available in C. But for string here we use mnemonics eq, ne, Greater than, lt, less
than, ge, Greater or equal, le, less equal. So when you are using comparison operator the
context should be clear to you depending on the context you are using either one of these.
Either the once for numeric or the once for the strings.

21

(Refer Slide Time: 44:55)

Now in addition to the operators you have some Logical Connectives also. The Logical
Connectives will allow you to define more complex relational expressions. Suppose I can
write if a equal to b and b equal to c then do this if a equal to 10 and b greater than 5 to this.
So I can combine this and or of a number of smaller relational condition to build up a
complex condition. So for this you need something called Logical Connectives and Logical
Connectives there are three such. These are defined as follows. If dollar a and dollar b are
logical expressions. Logical expressions means they have values of true or false then the
following conjunctions are supported by Perl. Well there are two styles there are identical
equivalent. The second style is the C style where we can use double ampersand for AND
double bar for OR and exclamation for NOT.

But this is much more English like and easy to understand and or and not. It is recommended
that we use this style in Perl. So that the program becomes easier to read and understand. As I
said both the above alternatives are equivalent, but the first one is more readable and so it is
recommended that you use the first one in your programs are applications. Now to summarize
in today’s lecture we had looked at a few things. We had looked at some operations on files
we had looked at some of condition operation operators that are supported by Perl and the
relational operators we have had a very quick look at it. Now using these, I think you are now
in a position to start writing small Perl programs. Now I strongly recommend that means I
have given a number of examples in the course of this lecture. You try out these lectures
yourself. You run them on your machine by installing Perl as I had mentioned earlier and you
try to find out what is actually coming.

What are the variations do to the program you can play around with? You can learn a lot that
way. Well I am only trying to give you guideline, what are the things that Perl supports and
how they are. But it is up to you to run programs to write some more programs to play with it
and understand the integrities of the construct and concepts. Now in the next class we would
be continuing with our quest for newer features of the language Perl. We will see that there
are number of other interesting features in the language in particular there is something called
regular expressions which is considered to be one of the most important features of Perl. It is

22

slightly complex but we will try to look in to them and try to understand how to use them. So
we have come to the end of today’s lecture whatever we have discussed. Let us now move on
to the solutions of the questions we had posed last time.

(Refer Slide Time: 48:47)

Number 1. Do you need to compile a Perl program?
The answer is No. Perl need not have to be complied; we had mentioned that Perl works in
interpretive mode. You just need a Perl interpreter which can accept the Perl source code
directly and can execute the source code statement between statements you do not need a
separate compiler and compilation step for executing.
Second. When you are writing a Perl program for a Unix platform, what do the first line
indicate?
Now this we had mentioned at the very beginning when we are talking about the way to run a
Perl program. This actually means that this is the path name. That means the user bin perl
path name of Perl interpreter. This is a very generalized concept instead of perl interpreter
you can give the name of some other program which will start running whenever you run
such a way file.
Why is Perl called a loosely typed language?
It is called loosely typed because the data types, the concept data types is not present and you
are not defining any variable with any data types by default. So whatever value here you are
assigning a variable takes that particular type.

23

(Refer Slide Time: 50:31)

A string can be enclosed within single quotes or double quotes. What is the difference?
This we have mentioned repeatedly if a string is within double quotes. Then variable
interpolation is in effect and any variable which is included in this string will get expanded by
their value.
How do you concatenate two strings? Give an example.
Concatenation can be done by the dot operator we have giving an example in the class. Also
several scalar variables you can concatenate by putting dot in between. So you get a new
string as a composition or concatenation of the three.

(Refer Slide Time: 51:19)

What is the meaning of adding a number to a string?
This I have said adding means you are actually adding the number to the ASCII value of the
string.

24

What is the convenient construct to print a number of fixed strings?
Well you can give print a number of times, but this line-oriented quoting is much more
convenient approach this I had mentioned.
How do you add a scalar at the beginning of an array?
By constructing a list with this scalar to be added at the beginning followed by the array. This
if you assign it to the scalar xyz. This 10 will get added in the beginning.

(Refer Slide Time: 52:00)

How do you concatenate two arrays and form a third array?
Simple. Form a list with these two arrays and assign it to a third array.
How do you reverse an array?
Just give reverse of an array and assign it to something else.
How do you print the elements of an array?
Print within double quote at arrayname. So here also of you give within double quote then
this interpolation will be carried out and the contents of the array will be displayed. The
elements of the array will be displayed. Now some questions from today’s lecture.

25

(Refer Slide Time: 52:41)

How to sort the elements of an array in the numerical order?
Write a Perl program segment to sort an array in the descending order?
What is the difference between the functions chop and chomp?
Write a Perl program segment to read a txt file input.text and generate as output another file
out.txt where a line number precedes all the lines?
How does Perl check if the results of a relational expressions is TRUE or FALSE?

(Refer Slide Time: 53:15)

For comparison, what is the difference between lt and this less than symbol?
What is the significance of the file handle ARGV within angular brackets?
How can you exit a loop in Perl based on some condition?
So these are the questions from today’s lecture. So with this we come to the end of today’s
discussion. Thank you.

26

(Refer Slide Time: 53:48)

Preview of next lecture.

(Refer Slide Time: 53:49)

PERL – Part III

In this lecture we continue with the discussion on the Perl language. Now if you recall, we
had already discussed the concept of variables expressions, how the expressions are evaluated
in Perl. We talked about arrays and we talked about a few other string manipulation features
that are available in Perl. Now in the present lecture we would first start looking at a couple
of very interesting and important string functions followed by something which is considered
to be one of the most powerful features of Perl namely, regular expressions. So we start by
looking at some of very interesting string functions.

27

(Refer Slide Time: 54:45)

Well the first function is called Split. Split as the name implies is used to split a given string
in to multiple pieces using a specified delimiter. What this means is that giving a string there
are certain delimiters. Some defined delimiters; it can a colon it can be a space. They this
particular delimiter is existing in several different points in the string and the whole string
will be cut at the locations of the delimiters and the pieces that you get after the cutting, it is
formed as a list. So the result of a split is a list of elements. So split breaks up a string in to
multiple pieces and creates a list. Let us take a small illustrative example. Suppose I have a
list like this. Red:Blue:Green:White:255 separated by some character colon, the whole thing
is a list. Now you look at this assignment we have assigned this string to a variable dollar
underscore. Well we could have used any conventional variable names. But we have chosen
to use the dollar underscore character.

Now dollar underscore has a particular significance dollar underscore is some kind of default
variable in Perl. See suppose you assign it to a variable say dollar abc, then whenever you
want to refer to the string you should mention the name of the string dollar abc. But this
dollar underscores which is considered to be default. If you use it in a string in many
operations you will see that it is not required to specify the name of the string. By default it
will considered or assumed that the string is (….) can understand this kind of facility gives
Perl its power this is an example of regular expression see within this forward slashes I am
writing every, this is a a simple example of a regular expression and this equal to tilde. This is
an operator which means you search.

You are searching if the string specified in right hand side is present in the string on the left
hand side. You can see this is extremely easy to use. As I had mentioned the text between the
forward slashes this defines the regular expression and here we are using equal to tilde to
check if it is present. This one now as an alternative we can use exclamation sign tilde which
means the negation of the condition. This means that the pattern is not present in the string.
So in place of equal to tilde if I write this exclamation tilde, this would mean that if this string
every is not present in dollar underscore then print something. So whether you want the truth

28

value of the condition checked in the if statement to be whether the string is present or not
present, you can use either equal to tilde or exclamation tilde.

(Refer Slide Time: 58:27)

So the example that we have seen that is the example of literal text. Literal text means within
forward slashes we are specifying simple text to be searched for. This is the simplest possible
form of regular expression. Some text enclosed in forward slashes you give and that you can
search whether it is present or not. There is something to remember here that when you are
performing the match all the characters in the string are considered to be significant.

29

