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So, continuing with our discussion on synthesis, today we would be talking in some more detail 

about the process of logic synthesis. Synthesis at the level of logic.  
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So, first let us try to understand what is the basic problem of logic design or logic synthesis? To 

start with, we assume that we are only considering combinational logic. The reason is that if we 

have finite state machine, there are very well-defined ways through state assignment tabular 

techniques to convert that into equivalent specifications for combinational part and sequential 

part. So that is a very well understood approach. So, we would be concentrating, right? Now, on 

the combinational part of the problem; that means how to synthesize or optimize the 

combinational specification part of the design specification. So the basic problem here is to 

convert from logic behavior, may be in terms of logic equations to gate level net lists. Now again 

I reiterate that requirements, may be conflictive, you may need to maximize speed minimize area 
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power. But everything you cannot get together. So if you maximize speed, possibly you will be 

paying for more area and more power.  

 

And more over there can be other considerations like, suppose you have a logic equation like, 

this a simple example. So if you take b c common, from here you can see immediately that this 

gets minimized to this expression, say in terms of the straight implementation terms of AND and 

OR, you get this. But if your technology library, if your component library says that you can use 

only negative gates; negative gate means NAND, NOR, NOT, AND, OR, invert. Then you will 

have to redesign or translate this design net list into an equivalent net list like this which consist 

of NAND and NOT. As you can see here number of gates has increased with respect to this, so 

these are some of the constraints that we need to full fill. So here we cannot do much about this. 

We do not have AND and OR gates available in our library. We must redesign them using 

NAND and NOT. Now the next thing is that how do we specify the logic behavior which you 

want to synthesize?  
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Now, there are many methods. I am showing here two of the more popular methods. One is the 

so called PLA format and the other is well known sum of products form. Well, sum of product 
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forms did not require any explanation. It is the standard Boolean expression form. If there are 

multiple outputs, we specify one equation for each. Now, this PLA format, you know that a 

programmable logic array can be represented by a so called personality matrix. Now, this 

particular specification behavior of the PLA says that there are three inputs, three outputs and 

four product terms. Now, in terms of the PLA layout if I draw, there are three inputs 1, 2, 3, say 

this is a, a bar, b, b bar, then c, c bar. There are three outputs this, this and this, and there are four 

product terms 1, 2, 3, 4, and this portion of it specifies the interconnection. See 1 x 1 this part is 

the AND plane this part is your so called AND plane and this part is the so called OR plane of 

the PLA. In this portion represents the AND plane and this portion represents the OR plane.  

 

Now, in the AND plane if there is a 1, it indicates that there is a connection with the 

uncomplemented letter a 0. Means there is a connection with the complemented letter x. Means 

there is no connection with that letter. So 1 x 1 means for the first one, 1 means it is connected 

with here, there is a transistor here, b is not connected, 1 means again c is connected and 

complemented. 0 1 1 means here there is no connection and in the OR plane 0. Means no 

connection 1 means connection 0 1 1. Similarly for the next one x is not connected 0 0. So b bar 

is connected c bar is connected 0 1 0 0 1 0 1 x 0 1, means a, is connected x not connected 0 

means c bar is connected 1 0 0 1 0 0 x 1 1 x 1 1 0 1 0 1 1. So this is the PLA so there are 3 

outputs you can see. So the product term realizes what the first product term realizes a c, the 

second realizes b bar c bar, the third realizes a c bar and the fourth one, b c. So the first output a c 

bar second output a c or b bar c bar or b c third output a c or b c you see it is the same 

specification as this. So these are the 2 alternate ways of specifying the same thing. Sometimes 

we specify it by PLA; sometimes we specify it by equations.  
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Now the logic synthesis problem, given the input specification in one of these two forms; mainly 

we have to do or carry out a process of simplifying the logic equations. So in the process of 

simplification, we are primarily looking at reduction in the number of literals and also operands. 

This is the first step that we want to minimize the logic equations minimization is one thing. 

Then we will have to synthesize like all the gates. That means all the expressions in the 

minimized form may not have equivalent gates at the library. So you will have to map the logic 

equations to gates. See first one is a purely mathematical step. You are doing minimization of 

Boolean expressions. Second one you are mapping the expressions to available gates, third one 

after you have finished mapping them into gates you do some sort of gate level optimization. 

Like if you have a OR gate followed by a NOT, replace it by NOR or if we have some special 

considerations for delay or power or area.  

 

You can do some optimization based on the context of the design if you are wanting to minimize 

delay. You try to reduce the number of levels by combining gates moving gates here and there 

and so on; and of course after we have finished the gate level optimization. Finally you will have 

to do this technology mapping step because, ultimately this technology mapping step is essential, 

so that you pick the correct cells which are available in the library; in the technology library, so 
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that you can ultimately go into the final physical implementation of the design. Now, this logic 

synthesis problem has been studied for a long time. There are many classical approaches or 

methods which are available in the books I mean in the literature. So very quickly we will be 

looking at a couple of them.  
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We will start with two levels minimization. And when we talk about two level minimization, the 

first method that comes to our mind is the classical karnaugh map method. Now, recall in the 

karnaugh map method, we construct a table or some kind of a chart. And on that chart all the true 

min terms are represented by 1 and the ‘don’t care’ min terms are represented by a x. And we try 

to cover them using as few and as large as possible. That is how we do or carry out the 

minimization and it is more of a. You can say a visual process that we do. We look at it 

pictorially and you try to identify the bigger cubes. Now it is not very easy to automate the 

karnaugh map method by implementing it on a computer for obvious reasons. And another big 

problem is that, well, as you know the karnaugh map, you can use the maximum five or possibly 

six variables, not more than that. So in general if there are n inputs in the circuit the karnaugh 

map will contain 2 to the power n entries. So, the numbers of entries grow exponentially in the 

number of inputs. This is one big problem that is the size of the problem increases very rapidly.  
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And of course this is the objective of karnaugh map. I have told you to find minimum prime 

cover. That means, there should be fewest terms and we have to choose the maximum covers and 

you try to utilize the ‘don’t care’ terms judiciously so that the cover becomes bigger and the 

number of terms becomes fewer. Now, as I had mentioned correctly earlier that the karnaugh 

map method of optimization is difficult to automate primarily because of two methods: one is 

that it is more of a graphical method which you do through visual inspection and secondly the 

minimum cover problem has been shown to NP complete problem which is computationally 

difficult. So, if you apply any kind of a greedy approach, there is always a likely hood that you 

get into a solution which corresponds to a local minima. But that is not the overall best solution. 

You get into a local solution. That is not the best possible one. So, finding the best possible 

solution is not a very easy task for large values of n.  
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And of course again looking at the problems of k map, once again the number of cells you have 

that grow exponentially in the number of input variables. So a 50 input circuit is a very practical 

one. So just imagine you will be having 2 to the power 50. So many cells, this is simply 

impractical. So if you want to have something similar to a k map implementer, in a computer you 
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will not implement it just as a map. As a picture you will have to have very efficient data 

structure for representing the functions and also for searching for minimal prime cover. So, one 

such approach is the Quine Mccluskey method. See Quine Mccluskey method is essentially a 

systematic way to approach the problem. But it is not really much different than k map method. 

In k map we are doing it visually in Quine Mccluskey method. We are trying to formulate a 

systematic approach. This is this method. Since it is systematic it is easy to implement in 

software. But easy to implement does not mean that it is efficient computational complexity still 

remains high.  

 

So if there are n numbers of variables, the total time complexity can easily go up to 2 to the 

power n. This is one thing which we cannot eliminate in Quine Mccluskey method. So what is 

the solution? Now, the solution is that this karnaugh map or the Quine Mccluskey method, the 

basic you can say the premise of this method was that I want to find the best solution. So, let us 

try to find out a systematic method to do that. But practical considerations say that since the 

minimum prime cover problem itself is n p complete. So it is futile to search for the best solution 

always; particularly if the problem size is big is large. So, rather it will be much better if we have 

a method which can give us very good solutions in reasonable amount of time that very good 

solution does not mean that it is the best possible. But it is very close to the best. So, one such 

method which is in fact a very popular method used for two level optimizer is a software 

package which is called Espresso.  
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This uses an approach like that you will see that, in this method there are some steps which may 

appear to be funny. Because those steps are not anything through which we are trying to improve 

a solution. But we are expecting that if we do this in the future, we may lead to a solution which 

is better this is more like a random search kind of approach. You are following with the 

expectation that we will be landing up in better solutions in the future. So and again in these 

algorithms, there is nothing like this is the end of the algorithm you reach here and you finish 

this is the last.  

 

Say as long as your computer time budget permits you can go on running the algorithm, you will 

be getting better and better fine. Now before trying to explain the algorithm let us introduce 

some notations for an n input function I had mentioned that, there are two to the power n 

possible min terms. This can be represented by an n dimensional space. This is a Boolean space 

because along each of this n dimensions values can be either 0 or 1. And each point in the n 

dimensional space corresponds to a unique combination of n literals.  
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Let us take an example. Suppose we take n equal to 3. So for n equal to 3 the solution space will 

look like this a cube. Now, in this diagram, suppose the three input variables a, b and c and we 

assume that this is our origin. The origin means, this represents the point where the a b c values 

are 0 0 0. Suppose, this is the dimension corresponding to a, this is the dimension corresponding 

to b and this is the dimension corresponding to c. So whenever we are moving along a edge in a 

particular direction the value of the corresponding variable changes state.  

 

For example here it will be 1 0 0, here it will be 0 1 0, this is the c direction. Here it will be 0 0 1. 

This is again direction of a this should be 1 0 1. This will be direction of b. So 0 1 1 direction of 

a will be 1 1 1 direction of c should be 1 1 0. So this is what we are trying to say that this, we 

will look at for n input function n dimensional Boolean space. Each point mapped to a unique 

combination of the n literals. So each point of the n dimensional space is mapped for example 

this point is mapped to this combination 0 0 1 a equal to 0 b equal to 0 c equal to one. So it is the 

same for all other point fine.  
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So, this each point in the space is with respect to the karnaugh map it represents the entries. Each 

entry represents a min term and in this n dimensional space if you take a conjunction of some 

literals. For example, in this n dimensional space if you take a combination of these two literals, 

say 0 0 1 and 1 0 1 together. This we call as a cube. This definition of the cube is very similar to 

that for a k map. So, the cube is a conjunction of literals and that each of the literals are the 

points that are true. We will take only those points which are the which correspond to the true 

min terms.  
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And when you say that there are expressions, so there will be a number of such cubes, we will be 

taking in the disjunction or OR of that. May be we have 1 cube like this another cube like this. 

So this or this well some of the combinations may be ‘don’t care’. Like, suppose for a 2 cube, 

there are only two variables a b. These may be the combinations say this is 0 1 1 1 1 0 and 0 0. 

This is a cube. Say now when you take a cube which consists of a bar b bar and a b bar they 

combine together. This becomes only b bar. So with respect to this cube a is missing. So with 

respect to this cube we say that ‘don’t care’ literal is a, it is not that I am talking about, ‘don’t 

care’ min terms I am talking about ‘don’t care’ literals. So when you have a bigger cube some of 

the literals are missing those literals are said to be ‘don’t care’ literals.  
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So the basic approach behind Espresso is to try and minimize cover of the onset of the function. 

See, on set means, the set of vertices that correspond to 1 like in, k map we take only those min 

terms which are true min terms and try to cover them. So the approach is very similar. We take 

only the two vertices which we call the on set and it tried to obtain a cover for them using 

minimum number of cubes and bigger cubes. Minimum set of cubes is of course one requirement 

and we can utilize ‘don’t care’ literals like in k map again. So that is either the cubes can be 

made bigger all right. So, now let us see what the Espresso algorithm is essentially all about.  
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So, here you present the outline of the algorithm to start with we have the sum of products form 

of the expression. So, when you say it is sum of products form, so each of the product term 

corresponds to a cube which covers the on set like if you have a function like this f equal to a bar 

b bar a b c, a bar b bar corresponds to a cube and a b c corresponds to another cube. So it is a 

sum of products form. This is one cube. This is another cube. Now this algorithm repeats 3 steps 

in an iterative loop until no further improvement is possible or your time budget runs up. Now, 

these three steps; I will be explaining these three steps are called expand, irredundant and reduce. 

Well, as the name implies expand means you try to increase the size of the cube expand. Second 

step you try to reduce or remove some redundancy. Say get after the expand step you may be 

having some cubes which are not necessary which have become redundant.  

 

So you try to remove them. The third step you try to reduce the size of the cubes. This may be, 

well it may be funny. But you really do this. You can reduce the size of the cube with the hope 

that well, right? Now we may be worsening the solution. But this worsening may lead to a 

betterment in the near future; that is the espresso. So these three steps are efficient and in the 

meantime in the say during this loop. You occasionally make some sudden changes to the 

solution make some perturbations. Well we will be explaining that two ways. You do 
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perturbations. I will explain these 2. Now the objective of this perturbations or to make sudden 

changes to the solution is essentially to try and see that we do not get locked into a local minima. 

Well, if you make sudden changes to the solution, it is likely that the solution comes out of the 

local minima and goes somewhere else. From there if you repeat those steps, we will be going 

towards a better solution.  

 

So this is an approach which tries to do that. Now as you can see from the steps, that it is not a 

very deterministic algorithm that we start from somewhere. We stop at a point with the guarantee 

that whatever we have obtained is the best. No it is not like that. So we try to iterate we try to 

make random changes with the hope that we will be getting a better solution. But our hope may 

or may not be full filled in all cases. But it has been found that for most of the circuits we can get 

a good solution in a reasonable amount of time fast enough. So now let us try to explain what are 

these three steps expand irredundant and reduce.  
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The cube operation expands says that you try to make each cube as large as possible without 

covering a point in the offset. Well so if you have a smaller cube we try to make it bigger you 

this. So here you see lets take a example second is draw that cube. So 0 0 0 0 0 1 0 1 1 0 1 0 1 1 
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1 1 1 0 1 0 0 1 0 1. So in the original one, it says that a bar b c bar. That means 0 1 0 this 1 b c b 

c means these two things taken together a bar b c a b c a b bar c bar 1 0 0. This was the original 

cover. There are three cubes after the expands step and also there is a ‘don’t care’ literal a b bar c 

1 0. Suppose this is ‘don’t care’. ‘Don’t care’ I am marking green, this is do not care. So after the 

expand step what you do? You try to expand all the cubes in whatever directions you can.  

 

Well you see that you can expand in a number of different ways like this 0 1 0 which is there is a 

single cube in different color. Suppose you can combine this with neighboring, see these are the 

on states these are the true min terms. So you can make a cube like this. You can make a cube 

like this. You can make a cube like this. So in the all possible ways you can expand the size of 

the cube you do that and for doing that you can utilize the ‘don’t care’ literals. So, now here 1, 2, 

3 and 4 cubes which correspond to a function like this. So this is essentially what this cube 

operation expands. See, here we are simply trying to expand the existing cubes in all possible 

direction it can. But we are not checking whether the cube cover we have obtained in the process 

is redundant or irredundant. For example in this one, suppose if you take this cover and this 

cover then this cover is not required. These two points are already covered by other two. So 

some of this, may be removed. But in the expand step we do not do that we simply try to make 

the cubes bigger and removing the redundancy that will leave to the next step.  
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The step is irredundant. So, the expand step will expose some redundant cubes. Now, in the 

second step irredundant step we try to remove or throw out the redundant cubes. So redundant 

cubes are those for which the points are already covered by other cubes. Those we can simply 

throw out. Now, in the earlier example well as I had mentioned we can throw out 1 of the cubes 

b c. We can throw out these we can retain this 1 this 2 and this 1 3. So starting from this you can 

identify that b c is redundant, we remove this we get this. So, after this step irredundant we get a 

solution where the redundancy is removed, right? So, you can expect that after expand and 

irredundant we get a solution, which is you can say to some extent minimized. Well we have 

explored the expansion of the cubes and we have removed the redundancy. But you understand 

we still are following a greedy approach. We are not looking at the problem globally. So maybe 

we have or we have reached a point which corresponds to a local minima. So the next step the 

reduce step it tries to explore other alternatives.  

 



17 

 

(Refer Slide Time: 32:18) 

 

 

 

Reduce step says that the cubes are reduced in size. Reduced in size means we are again 

increasing the redundancy. So a cube which is bigger, I make them smaller like say again let me 

draw that cube. So here we had 0 1 1 0 1 0 1 1 0 1 0 0 1 1 1 0 0 0. So a bar b was this. These are 

the two main terms a c this was the ‘Don’t care’. This was the ‘don’t care’ and a b bar this one. 

Now, after the reduce step what you can do is you can retain a bar b. This is retained and the 

other ones we can retract. This, a c I can simply make it smaller I make it only this a b bar. I can 

simply make it this. So, some of the cubes may be made smaller by removing the ‘don’t care’ 

terms or by taking out some point which is covered by some other cube.  

 

So in this way some of the cubes are making smaller. So now I have this 1 big cube and 2 

smaller cubes these 3. Now you may argue that why we are doing this we are making the 

solution worse. Yes, we are making the solution worse. But our intension behind doing this is 

that, some of the cubes we have made smaller and in the process we have opened up possibly an 

avenue. So that this smaller cubes can expand in other directions in the future may be if this was 

also a ‘don’t care’ term. Now, this cube can expand in this direction, right? So we are now open 

to other possibility that is why we are doing this.  
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So after this step, the new cover will be typically different from the initial cover. So as you, as I 

mentioned the expand and irredundant step after you do this. After you do this, reduce if you 

again apply expand and irredundant step. May be you will be moving to another solution which 

can be better. But there is no surety that it will be better. But you are exploring other alternatives. 

So as you repeat these three steps what happens is that you are moving from one area of the 

solution space to the other. Your total solution space is huge. It is not possible for you to explore 

everything. But you are trying to move from one part to other using these three steps and every 

time you always memorize that what is the best solution I have seen so far. So after certain 

number of steps or after certain time have elapsed you check or you see if what is the best 

solution you have seen so far and you report that to be the solution to be taken accepted. Now, as 

I mentioned apart from these three steps you also carry out some kind of perturbations or some 

kind of sudden jerks to the solution.  
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These are applied periodically in between, in order to well even move out from one part of the 

solution to the other part, so that the chance of falling or getting stuck into a small area of the 

solution space gets reduced. You can go out to some other parts of the solution and explore. Now 

here the idea is something like this. Well this is a very simple solution. Suppose I have a two 

variable cube a and b simple example say 0 0 0 1 1 0 1 1. This is the direction of a and this is the 

direction of b. Well, a bar is this. These two points b is this. Now, the first step, well this is not a 

step. This is one kind of perturbation. This is called reduced gasp, this is the name. It says that 

you retain these two cubes as it is, but also add some more which are not common like a bar b 

bar. Let this also be a cube a b, let this also now you have 1, 2, 3 and 4 cubes.  

 

So one which is common to both ‘don’t’ ‘do’ that, but with the others you also add them as a 

cube. So now you allow them to expand in all other directions. So this is some what similar to 

reduce. But you are exploring all the possibilities together and expand gap is a similar step. Here 

also I am showing. Suppose I have this map and you had these three cubes. You have this a bar 

b. You have this a b. You have this. So now it says that a bar b bar you leave this as a cube, leave 

this, leave also this. But you take this one, the other one you combine either with this or with 

this. So now there will be three cubes 1 2 3, this is called expand gasp. Of course after expand 
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gasp you can have a thing where one cube becomes the proper subset of the other. But still you 

retain this so that during expand phase the small cube may possibly expand in other directions, 

right? But you can see these are not any step which is used to improve the solution consciously. 

But essentially you are trying to get a situation where you can explore steps which explore other 

steps other ways of expanding or moving out. So let us take a small example.  
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An illustrate, the different steps of this espresso algorithm. Let us illustrate with a 3 cube. So let 

this be the direction of a and this is b and this is c. Say, I am only showing the true min terms. 

This is a true min term this is a bar b c 0 1 1. This is true min term, this is another true min term 

0 1 0. This is another min term, this is 1 1 1, this is another, this is 1 0 0. The same example and 

this one is a ‘don’t care’ I am showing it as dot 1 0 1. Now in this example, what I said just I am 

repeating just to show all these steps together that suppose to start with we have a cover where 

the one cover is this itself one. There is another cover where this one is alone there is another 

cover where you have these two. These are the three cubes. Now, the expand step what you can 

do is the first step is expand. I am just trying to summarize what we are doing in the expand step. 

What you really do is that you see that in which direction the existing cubes can expand like you 

look at this bigger cube.  
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You see this cube cannot expand any further because the cube can cover only 2 to the power 

certain number of nodes 1 2 4 8 in that way. But this was a single term. You can say another true 

never. So you can combine these 2 into 1. So in the expand step you can take these two together. 

You can also utilize the ‘don’t care’. This single one, well although you cannot expand this 

bigger cube. But this ‘don’t care’ one you can take along with this you can have this as 1. 

Similarly this one can combine with this do not care. So now, we have 1 2 3 and 4 this is expand. 

Now, after expand what I have said that you see that you know how all possible expansion. But 

you see there are many cubes which contain end vertices which are already contained in other 

cubes, right? So some of them you can eliminate. So for example, you can eliminate either this 

one or this one. But you cannot eliminate this because it contains this vertex or this. But for the 

other two, the end vertices are contained in the other. So you can eliminate one of them.  

 

So the irredundant step tries to do that. So after irredundant step possibly you will be getting a 

solution where you have this, you have this and you have this. This one you remove you have 

these 3 cubes. Now after that as I have said that when you do that reduce reduce is just the 

reverse of expand. That will show expanding some of the cubes you contract. So the example I 

have said that you keep this you return this. But these two you remove and you make them 

smaller. Let this cube contract to this and let this cube contract to this. So, these are the different 

steps which you can use in the espresso and the espresso algorithm. As I said it works in this way 

and you can expect to get a good solution in a reasonable amount of time if you follow these 

steps.  
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Now, to summarize this espresso algorithm, what it does? This algorithm successively generates 

new covers. Well, until no further improvement is possible, this step you can use if you are not 

using the two perturbations. That means these two perturbations are mentioned reduce gasp and 

expand gasp. If you do not use them, then beyond the point you will see that you are not getting 

any further improvement. But if you use them, then you can drastically get away from the 

solution and you can explore newer portions of this search space. So essentially, what you do 

there is that, instead of saying that I repeat till no further the solution is possible, rather than that 

I will say that I will repeat till my time budget exhausts. I will run my program for 10 minutes. 

So within 10 minutes whatever best solution I get, I will take it and the good thing about 

espresso is that it had been.  

 

It has been tested over very large number of problems and it has been found to produce near 

optimal solutions which are very much acceptable. Now since espresso is a two level optimizer, 

it produces the functions in sum of products form. So to talk about two level circuits, the first 

kind of circuit which comes to our mind is the PLA. So this is used either for PLA minimization 

or it is used in a different context. Even for a multilevel logic minimization sometimes we need 

two level optimizers. So this espresso can be used as a function which is called from within a 
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multilevel logic optimizer and statistically it has been found that this espresso can process 

extremely large circuits, say of the order of 10000 literals, hundreds of inputs and outputs. But 

even for circuits of this size it does not take more than 15 minutes on a typical high speed 

workstation. 

 

So what this means is that, this espresso algorithm is an acceptable algorithm which many people 

uses in practice. And as you see for many other algorithm that we will be studying or looking at 

which later that in CAD in VLSI CAD electronic automation design, there are several different 

steps where the solution space is very huge. Solution space is huge and it is not possible to 

explore all portions of all portions of the solution together. So there we go for a compromise. So 

instead of trying to go for the best solution, we try to get a good solution, but within a reasonable 

amount of time. So we will see that, well the way espresso algorithm works will give you a hint 

of what we really do. See espresso algorithm there are some steps which you can appreciate. 

Well you are moving towards the correct solution. But there are some steps where we are 

moving away from the good solution. So that, is the crux of these classes of algorithms that 

sometimes we move towards the good solution. Sometimes we move away from a good solution. 

Our expectation is that in the process.  

 

We will finally land up in another solution which is better than the one we have seen so far. Now 

here we have seen or we have looked at this method of two level optimizations. Now the 

question is that is this two level optimizer is sufficient or we need to have some methods where 

the number of levels needs to be more than two. Well, it is not very difficult to answer this 

question. See if you think of some classes of circuits. We will give an example in the next 

lecture. There is some classes of circuits which can be implemented in two level realizations no 

doubt. But the number of resources and the complexity, well, when I say number of resources 

and complexity, it may mean number of gates. It may also mean the size of the gates because I 

told you earlier that bigger the gate slower will be its speed. So there are circuits for which 2 

level implementation will be very complex to implement. But if you go for a multilevel 

implementation you will see that there can be a drastic reduction in the amount of resources you 

require and in practical situations there are many circuits which are like that.  

 



24 

 

So in practice, people look for some methods or solutions which actually try to do an 

optimization taking not two, but more than two levels of logic. So of course delay is a parameter 

to be considered, but also there is another thing as I told you earlier, we will be repeating. You 

also have to look at the size of gates you are using. If you say, if you say that if you use more 

than one levels, more than two levels, but the sizes of the gates are less, then possibly overall on 

the whole the delay of the circuit will be less and not more. May be number of levels is more, but 

the gates are smaller and simpler. So in our next lecture we will be looking at some aspects of 

multilevel logic optimization. And we will see the basic approach which follow the problems 

involved and what are the main. You can say the directions in which the people approach the 

problem. Thank you.    


