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We have talked about LFSR based zero random pattern generator using um using weight of “0.5” 

and any arbitrary weight power of 2 in our last lecture.  
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Now in this lecture we would be talking about the next thing we need to do in build in self-test 

namely, how to compress the response, response compaction. So before actually telling you how 

you do it using a LFSR first introduce some terminology and some basic concepts.  
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But first let us see what this response compaction actually involves okay. Now you recall that in 

a built in shift environment we are feeding the CUT circuit under test using a large number of 

LFSR patterns; typically in the order of 1000s. So the CUT output response generates huge 

volumes of data. Just an example, suppose using LFSR we are generating 4 million random 

pattern which is very typical. And the circuit has 200 outputs. So the amount of output data 

which gets generated is about “0.8” billion bits. Now this is clearly uneconomical to store this 

pointed billion bits and compare them individually with the corresponding fault free response.  

 

Of course this would have been the best thing if you could have done that. But since it involves 

such a huge volume of data we cannot afford to do this. So it is mandatory for compacting the 

response in some way before comparison. Of course compaction should be search that our 

confidence in the quality of testing should also remain high. You should not be that we are 

making a cross compromise and something by compaction we are trying to remove the problem 

of storage but the quality of testing is going down. That should not be irricase also. So let us see 

what is done in practice. But before that we try to give some definitions.  
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See we are doing some sort of a compaction from you can say bigger or larger response we are 

trying to compact it into a smaller one. So whatever algorithm you choose there is always a 

chance that two different responses may get compacted into the same so called signature. This is 

something which is called aliasing. Signatures of good and some bad machines may match 

because we are doing compaction. Compaction means we are leading to some information loss. 

Like a 1000 bit data you are compacting into a 16 bit data for example. Naturally we are 

incurring information loss. Say a 1000 bit data 2 to the power 1000 possible combinations.  

 

Now a 16 bit signature has only 2 to the power 16. So naturally two patterns can always match to 

the same signature they can match. So there will be information loss and hence aliasing. The 

process of compaction involves a drastic reduction in the number of bits. Since we are reducing 

the number of bits naturally this involves information loss. Compaction is used in built in self-

test. But we have another related term compression but compression is used in a different 

context. Compression also tries to reduce the number of bits in the response but using some well 

defined algorithm so that the original response could be restored by using a reverse algorithm.  
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So there is no information loss. Like in a computer when we use compression program like 

compress or win zip or something. So you know that we can again come back to the original one 

by using a decompression algorithm. So compression decompression is something different. We 

are trying to compress or reduce as for as possible. But we are keeping sufficient amount of 

information so that we can also perform the reverse mapping in the in some latest stage. So we 

do not lose any information later. So actually it is not compression that we are interested in we 

are interested in compaction.  
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Now the method which is used in BIST is traditionally called signature analysis. This says that 

you compact the good machine response into a small value which is called the signature. Now 

during testing you again compute the signature and compare the signature with the good 

machines signature which is stored in a ROM. Say in a ROM you stored the good machine 

signature and using a response compaction block. You generate the signature during the actual 

testing. These two values you can compare and you can report if it is good or bad. This is the 

basic idea. Now LFSR in the signature analysis and response compaction these has been 

traditionally used much before this testing came into pin.  
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In fact if we look at this linear feedback shift register for response compaction, well this 

compaction uses the same technique which has been used since long time. Well you must be 

familiar with the cycle redundancy check code which is used in a wide variety of application like 

your diss subsistence input output networking. So wherever you need to check for some errors 

bit errors you use CRC checks some at the end of the message. So that you can recomputed CRC 

after receiving and compare if the match okay. So LFSR for response compaction what they do 

that is exactly similar to this CRC check code generation. Now the why CRC operates I am not 

going in the detail. See you have an LFSR. Now this LFSR realizes a characteristic polynomial 

okay. Now you feed the LFSR with a stream of bits as 0 1 pattern okay. Now this input bits 

stream you can treat that the bits or forming the coefficient of a polynomial Q x.  

 

If P x is the characteristic polynomial of the LFSR, then what you do is that, you are actually 

dividing the polynomial Q x by P x and generating the remainder polynomial R x. R x is the 

remainder okay after division. So whatever is a remainder polynomial that is treated as the CRC 

code or the signature in the present context. So after all the patterns have been apply the way the 

LFSR response compactor is designed automatically whatever data or remains here at the end, 

this is the remainder R x. But in order to do this, initially the LFSR must be initialized to all zero. 
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But here, there is no harm in putting 1 0 because well some data is also coming from outside. So 

there is no fear that the LFSR will get stuck into the all zero pattern like it was for the pattern 

generation case okay. So what you do that after the testing is complete?   
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You complete signature whatever is they in LFSR to the known good machine signature. Of 

course you must compute the good machine signature through simulation before and stored in a 

ROM okay. This is the scheme. So now let us see how using LFSR you can compute the CRC 

check word or the signature. It is fairly simple of course LFSR can be designed in a number of 

different ways.  
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This is an LFSR with internal XOR okay. So here I am showing a LFSR which realize this 

characteristic polynomial x to the power 5 x cube x and one these are the coefficients. Now we 

look that from which points you have taken the outputs. This corresponds to x to the power five 

here x 3 power 4, this 1 x to the power 3 this one x to the power two and this 1 x. Of course the 

input this is treated as one. You see we have XOR of course the output will always to be fed 

back. So x to the power 5 will always be there. In addition you have connections from x cube x 

and one. So these are the terms which are there. So given any characteristic polynomial you can 

construct the corresponding LFSR like this.  

 

Now the only difference from pattern generator is that in a pattern generator you did not have 

this XOR rather this line was directly connected to the input. But now you have an additional 

XOR in the input stage where the input bit stream is being fed of course a clock is there. And the 

LFSR is initially loaded with the all zero pattern. So now the circuit responses are coming you 

are applying the clock and whatever response remains finally here that is the remainder 

polynomial and that is the signature. So the concept of signature compression or response 

compaction using LFSR is very simple in concept.  You can use a very simple structure like this 

LFSR to do both pattern generator and response compaction.  
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Now since the structure of the pattern generator and response compaction are so similar, now 

you can understand why you can easily built a structure like that BILBO, built in logic block 

observer. That was a general purpose structure which depending on a requirement you can 

configure it as a test pattern generator or the response compactor okay. But first now let us try to 

analyze some issues related to the aliasing probability. That we are compressing a big stream into 

an LFSR signature where number of bits is equal to the number of flip flops in the LFSR 

typically 16 or 32. So what is the price you are paying or what is the chance that fault may occur. 

But we are unable to detected the faulty signature is the same as the good signature. So let us try 

to make a simplified analysis of the so called aliasing probability okay.  
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So aliasing probability as I said it is a probability that a LFSR taken place but we are unable to 

detect that error. So aliasing, actually means that there exists some error in the bit stream. But 

even in the presence of this error the final signature does not change which means that we are 

unable to detect this fault. Now let us try to do a simplified analysis of this problem lets say that 

we have a n bit data stream and we have a m bit LFSR typically of a most practical purposes the 

val of n is much larger compare to m. Because n can be of the order of milli arms and m can be 
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of the order of 16, 32 or 64 maximum okay. Now here let us try to see what does this mean, we 

are trying to compress an n bit pattern into an n bit LFSR. So we have response compactor block 

were at the input we are feeding and n bit data as the output you are getting am bit compress 

response. So what does this mean this actually means is that.  
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Well the input was n bit okay. Now in n bit we can potentially have 2 to the power n possible 

combinations. And similarly for the LFSR for m bit we can have 2 to the power m possible bit 

combinations. So it is always the there is a chance that several of these 2 to the power n patterns 

might get mapped into the same n bit pattern out here. This is what we term as aliasing. See if 

this is the fault free signature for example, then if two patterns map into the fault free signature, 

then means some of this patterns will also be the faulty pattern one of them will be the good one, 

the other will be faulty. So even if this kind of faulty takes place we will not be able to detect it 

okay. So let us see that what is the chance or probability of this thing happening. So what we 

have just said is that we have two to the power n possible data streams and we have two to the 

power m different signatures okay.  
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Now from this we are trying to n find out number of data streams that map into the same 

signature. This will be 2 to the power n by 2 to the power m assuming well here we are made a 

cross assumption. We are assuming that the patterns are uniformly distributed to respect to where 

they map okay. It is not that more number of patterns are mapping to this signature and few 

numbers of patterns and mapping to some other signature no. We are assuming that there is a 

uniform distribution. So number of data streams which can map into the same that means I am 

talking about the cardinality of this which can map into the same signature will be approximately 

equal to 2 to the power n minus m okay. So this is factor and from this we can try we can we can 

find out the probability of aliasing.  
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Now we can find out the probability of aliasing as follows. P equal to number of input patterns 

which map into the same signature just what you have just calculated number of input data 

stream that map into the same signature 2 to the power n minus m divide by total number of 

patterns. This is the probability of aliasing okay. Now this if you see it becomes equal to 1 by 2 

to the power m. So you observe one interesting thing that well of course we are made some 

assumption like uniform distribution of the patterns. But the result we have got is that we have 
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got a probability which is independent of the number of bits in the input stream. This depends 

only on the size of the LFSR.  

 

For example if m equal to 32 then your probability becomes 2 to the power minus 32. 2 to the 

power minus 32 means, what this is less than 10 to the power minus 9. So you can see that using 

a 32 but LFSR we can get an aliasing probability which is sufficiently small. And because it is 

sufficiently small, we can get a fair good amount of confidence in the you can say in the chance 

that we are detecting an error when it occurs with respect to this scheme. Because of this small 

probability that we get out here of aliasing, people use this with fair amount of confidence okay 

fine. Now there is an issue. Suppose we have talked about how we can compact bit stream using 

an LFSR. But suppose you have scenario like this. 
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You have a circuit under test these are the inputs. But instead of one output say there are four 

outputs. So here what we do if we have one output you can use straight away an LFSR out there 

and do it. So here you can have two alternatives alternative one. So alternative one is something 

like this. Here your CUT its circuit under test you have the four outputs and to all the four 

outputs you connect a signature compressor compactor. These are all LFSR’s. So if there are if 
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the k number of outputs you will be using you will be using k number of LFSR for response 

compaction. Now here the drawback is that you are requiring to use so many LFSR’s.  

 

But the advantage is that you can you can compress all of the outputs in one go. So you will have 

to apply the pattern only once. The other alternative is that you can somehow save on the LFSR. 

This alternative two is something like this. This says that you again have your circuit under test 

here. You feed them with inputs and the four outputs you first fit them to a multiplexer. You fit 

them to a multiplexer and the output of the multiplexer you feed to an LFSR this is the LFSR. Of 

course the MUX will be controlled by the test controller. Now here you can see that by selecting 

the MUX inputs one at a time you can compress one of the circuit outputs at a time in the LFSR.  

 

So the advantage is that you are saving on the LFSR one LFSR will do. But the prize you are 

paying is that the testing time is going up. Well for testing the circuit you will have to apply this 

patterns all these patterns four times. First time for output umber 1, again you repeat it for output 

number 2, again for output number 3 and output number 4. So the first alternatives request more 

hardware but less time this alternative request less hardware but more time. So we have to do 

something where we can well we can get an acceptable solution with less amount of hardware 

and also less amount of testing time.  
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So some people proposed and extension to the linear feedback shift register this is called 

multiple input signature register or MISR. So this is what we are just mention with the diagram 

that if you ordinary LFSR compactor one with each output then you need too much hardware. So 

solution is to use a signature register were there are multiple number of inputs you can compact 

all the outputs simultaneously into one LFSR. This is the cracks. Now this MISR the white 

works is that because LFSR has a linear property well I am not going to details of this. It obeys 

superposition principle. So what will happen is that suppose you have a circuit with four outputs, 

so if you compress this four outputs individually you will get four different signatures S1, S2, 

S3, S4. Now if you compress all of them together using an MISR the signature will be getting is 

actually the XOR some of this S1, S2, S3 and S4. So final remainder will be the XOR sum of the 

individual signatures corresponding to each of the outputs. So this is also quite acceptable in 

terms of testing. So MISR is also a structure which is quite popularly used and MISR looks like 

this.  
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This realize the polynomial x cube, x plus 1, this is x cube, x square, x and 1. You look at the 

feedback path feedback path as a connection here it is a connection here. And of course in the 

input so it is x cube x and one. But in addition we have now one XOR gate with each stage an 

additional XOR gate. These XOR gates are used to feed the input data of course this is another 

input, this is one input and this is one input. So externally you can feed three inputs together this 

d1, d2, and d2. So as if now you have a structure signature register which can accept three bits 

streams together. Now if we have a 32 bit register you can compress 32 bit data stream at the 

same time or simultaneously. So this is how and MISR works. Now using MISR a number of 

you can say built in self test schemes or architecture have been proposed which can be used for 

self testing or also for DFT in some cases. Well one such popular structure I am showing now.  
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This is a structure called STUMPS. STUMPS stands for self testing using multiple input 

signature register and parallel well SRSG is serial random sequence generator STUMPS. So here 

the architecture looks like this. Suppose you have a circuit out here this is a circuit in a test this is 

a sequential circuit. So the sequential circuit can have many flip flops. And the flip flops you 

have configured them in possibly more than one scan chains. You can use a zero random pattern 

generator. The each of the individual bits you can used to feed the individual scan chains and the 

outputs which you get you can compress using MSIR.   

 

This architecture says that DFT scheme using a scan path is not necessarily used always in 

conjunction or connection with a deterministic test pattern. That means you need not always 

have to apply the test pattern deterministically from outside and you need not have to just 

observe the responses by shifting them out always. But rather you can use a scheme like this also 

for you have this scan chains in place you apply some primary inputs, you can apply again some 

pseudo random patterns if you want. And to the scan chains also you apply pseudo random 

patterns. So you can apply pseudo random patterns here, you can apply pseudo random pattern 

here.  
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In the primary outputs also you can do a compression. So you compress values and the final 

compressed values only you compare. This method also has been found to work pretty well. 

Because before just adapting any such method in actual practice we will have to find out or 

evaluate through simulation that how good or how bad this method is and well means what are 

the implications of using it. You will have to evaluate the fault coverage through simulation 

applied of course before that will implement a BIST scheme okay. So to summarize this BIST 

schemes which you have mentioned this linear feedback shift register pattern generator.  
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And multiple input signature register response compacter. Structures based on these are preferred 

in BIST architectures. The preferred BIST methods used these but you should also keep in mind 

that BIST has its own prices that you have some overheads that we should incurve. Well the 

more complex your architecture is the more complex will be your test controller. Because it is a 

responsibility of the test controller to control the different BIST subsystems response compactor 

pattern generator who will be activated when, and when will be comparing the response 

everything has to be controlled by that controller with actually an FSM its actually final state 

machine. And since you are introducing some extra gates some multiplexors in the critical path 
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were circuit delay is will increase of course input MUX are there. You need pattern generators 

and response compactors.  

 

Not always you will find some, you can say some register which was there already in your circuit 

which you can expand or extend as a BILBO register to act as them. Sometimes you need to add 

an extra response generator or pattern generator. So an addition you need some DFT schemes for 

the purpose of initialize in the circuit because BIST is fine. But you will also have to initialize 

the circuit to a known state particularly if it is a sequential circuit. If it is a sequential circuit and 

if you cannot reset the flip flops to a known state your signature can also vary okay. So you will 

also have to have some kind of scan path kind of a thing. So that you can set the circuits in to 

some known state and from there you can apply the stimulus and you can find out the signature 

of their okay. But overheads are there of course but BIST also offers number of advantages 

which are pretty attractive.  
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Now the most important advantage gain is that you can test the circuits at the full operational 

speed. If the circuit is design to work at a sequence of 2 gigahertz, your test pattern generator and 

compressor can also work at two gigahertz okay. This is called at speed testing which I had 
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mentioned before and this at speed this at speed testing you can use for detecting stuck at faults 

its okay. Now addition you can also test some additional kinds of faults called delay faults. Delay 

faults occur or show because of some you can say mismatch of tolerances in the delays of the 

circuit components. Due to this delay faults there can be some signal clichés and hazards that 

may occur in the circuit. Now if you are doing at speed testing there is higher chance of this 

delay faults to show up as compare to testing at a slower frequency okay.  

 

And since you essentially do not need an expensive ATE to do this drastic reduction in the cost 

of automated test equipment and you can test with in your own lab in your field of work. So you 

can have it field test capability. So you can build a system the system will have a self test 

capability it is not that the chip has to be tested by the manufacturer only at their own site and 

they will be they will be delivering the chips to finally. And since we have of these interesting 

features you can have faster diagnosis during system test. Of course less effort to design testing 

process is very important because you are eliminating essentially the process of test generation. 

Because you are not using any conventional test generation algorithm of course. Of course here 

there are both plus and minus points. Since you are using pseudo random patterns as your input 

stimulus it is likely that you may not get for all circuits sufficiently high fault coverage okay.  

 

But the advantage of gain is that you are eliminating the expensive process of deterministic test 

pattern generation. Okay but these are the trade off you will have to look at an accept and of 

course shorter test application time. Because everything is done inside the chip or at a very high 

frequency the total test application time also gets reduced okay. So we have looked at some 

schemes for of course earlier we talked about methods like test generation and fault simulation. 

Subsequently we talked about design for testability techniques which are very essential to crack 

hot circuits like sequential circuits whether lot of flip flops inside. And then we talked about built 

in self test techniques where you can use in addition. Some more hardware where this stimulus 

generation and response compression can also be done on chip.  

 

But manufactures and industry people they faced some problem earlier because well these 

schemes were well understood and well accepted. But there was some lack of standard. Like if 

there is two company say S1 and S2. So S1 brings up a chip S2 also brings up another chip with 
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all this testability features inserted. But if I want to design a system employing these 2 chips 

from two different companies, so how do I make or means how do I design a scheme for system 

test. So is there any feature so that S1 and S2 can work hand in hand towards the testing? So 

industry people realized that since there was lack of standard in these of testability features well 

schemes were proportional schemes are accepted fine but there are no standard as such. So that 

filled that there has to be some kind of a standardization and when the first effort of the first step 

in the standardization process.  
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This was taken up by a joint committee and the came up with the scheme called boundary scan. 

Now the committee which came up with the standard.  
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They included they include almost all the leading industry people and the consortium was called 

joint test action group. And this JTAG name has become so popular that this boundary scan is 

sometimes also called synonymously as the JTAG standard okay. JTAG and boundary scan are 

used or today used together synonymously. Because you can today look at some chip say for 

example some APJs some APJ chips buy from the market you will see there in the pin just some 

of the pins they have called these are these are for JTAG complaints. JTAG complaints means 

they are they have boundary scan feature in build or embedded in the chip okay they call it 

JTAG.  

 

Now using this testability standard what you achieve is that, this standard allows test instructions 

and test data to be serially fed into a circuit under test. See test instructions are something which 

is new which means you are encountering here. Because you see all the chips may not be of the 

same type some chip maybe using conventional scan path based DFT some chip maybe using 

BIST. So externally when you are instructing the instructing the chip to do something. It is 

something similar to giving a small test instruction. That means what kind of test you want to do 

okay. So this JTAG standard this includes a set of such test instructions in the standard 

architecture itself.  
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And using the test instruction you can feed the test data and you can also read out the test results. 

There are also some special RUNBIST commands so that if you have a built in self test features 

in embedded inside a chip you can activate that. Normally we will be having DFT scan path 

thing so that you can activate scan path you can feed in data you can scan out the response. But if 

you have a complete BIST thing inside a chip you can also activate it from the outside. JTAG is 

totally hierarchically in nature it can operate at the chip level at the board level, which the circuit 

board level and even at the system level. JTAG allows the separate testing of components and 

also the system interconnects. Now the essential idea behind JTAG is that.  
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Say you have circuit under test or a chip okay. I am calling CUT general this a chip. Now you 

want to embed a boundary scan standard on top of this. So what do you do is that you have some 

kind of a so called test wrapper which you built around this. Now test wrapper is a fairly 

complex piece of hardware we will see shortly. There are a number of features in the test 

wrapper. Now through this test wrapper you can activate the different testing mechanism in the 

CUT you can well in case of normal operation you can say that well I 1 2, I 1 2 just apply the 

inputs to the CUT in the normal operation mode. Now the testing modes they will be features to 
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activate scan paths to activate BIST and so on. But I am showing you a very rough high level 

diagram of this wrapper what are the essential things which inside.  
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And you can appreciate that this will be fairly complex. You see this is the total chip and inside 

this was the circuit under test which calling this is the system circuitry. And these are the, or 

these where the input output pins okay. So the input output pins which we were there. Now what 

you do you put a flip flop just along with each input output pin. This is the boundary of the chip 

okay well whatever you do inside the circuitry is separate. But in addition in the boundary of the 

chip you provide a scan path. This is why this method is called boundary scan. There are flip 

flops just with each IO pin. They are change into a shift register okay. These IO pins also feed 

the system circuitry as you can see. So using these when they need arises you can use them to 

activate BIST inside or DFT inside. If there are scan path inside the circuitry you can scan them 

in scan them out. Now inside in addition to this there are lots of other things.  

 

For example out here you have an instruction register. Now in the instruction register is actually 

a register compressing of a few number of flip flops. Now you can shift in some bit pattern here 

and now depending on the bit pattern the kind of instruction you are trying to execute that will be 



23 

 

interpreted an executed. This instruction register can be fed through this test data input there is 

something called a bypass register. Bypass register is sometimes used if you are using several 

such chips in cascade I will just show um show diagram shortly. Several chips in cascade and 

through the test data input you want to program all of this shift, one after the other. So the first 

one you can do this in this path the second one you can follow a bypass path through this. This is 

a bypass path. So you can use the bypass path to access the next such chip which is the n 

sequence.  

 

And in the bypass part in addition there are some device ID register where the device ID of all 

this individual chips can be stored there. And means when you are sending the TDI you can also 

specify the device ID it can check automatically and do it. And all this things are controlled by a 

test access point controller TAP controller and there are some signals like test mode select reset 

clock and so on. So as you can see that embedded boundary scan in a chip is a non-trivial task. 

Here you need to add lot of additional circuitry in addition to your circuit and as compare to 

schemes like boundary scanner scan path you need to add lot more. Now the advantage you gain 

is the flexibility of the chip you get finally. You will see that if you have boundary scan 

implemented, you have a number of advantages using which you can diagnose and test chips 

boards and systems using the same kind of schema technique. Now as I said that you can have 

several such chips connected in cascade.  
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Say this diagram shows three such chips connected in cascade. And I am showing not all some of 

the registers only instruction register and data register. So when you are feeding the instructions 

it will be following this path, so actually for this you have the bypass registers. But in this 

diagram I am not showing the bypass register I am showing as if they are following this paths 

and they are rippling through and you can load the instruction registers of all this chips through 

this paths. Now addition you have the actual data register data registers are actually the boundary 

scan cells. These are through the same TDI input you can access these data registers okay this 

data registers you can access.  

 

These boundary scan cells, they actually compress a data register so when you are actually 

testing scan in and scan out you will have to use the data registers. So this diagram illustrate 

instruction register loading so you can load the instruct load the instruction registers. There will 

be some multiplexers in the output will have to select this to the next stage and so on. Now the 

advantage of boundary scan primarily is not for testing individual chips. But for testing a number 

of chips for in the line together in a board or in a system okay. So first let us see that when there 

are several such chips with boundary scan or JTAG capability embedded in it in a board what are 

the advantages we gain okay.  



25 

 

(Refer Slide Time: 47:18) 

 

 

 

This is an example I have given this can be a printed circuit board which consists of four chips 

these are the four chips I am defining. This is one, this is one, this is the third one and this is the 

fourth one. So it can be a printed circuit board with four chips or it can be a multichip module 

also multichip module is actually there are four different chips which are put inside the same IC 

package. So although its looks like single IC, but inside the IC there are 4 chips put inside. So it 

can work similarly for both. So what is says that if each of these 4 has boundary scan capability 

then the boundary scan register can be changed together.  

 

Like the test data in which is entering the printed circuit board this can go into the boundary scan 

register of the chip it can come out of here. It can feed the TDI of the next chip it can again come 

out of here. It can feed the TDI of the third chip it comes out of here and it can feed the TDI of 

the fourth chip and can finally come out of here. Now the advantage we gain out of this is that 

well at the level of the PCB we have single TDI and a single TDO. Well if you had sufficient 

number of pins we could have 4 TDI and 4 TDO. So that we could have just tested them 

together. But the main advantage of boundary scan is that is you have this you can change them 

all together and you can shift the test data serially.  
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So that we can access all the boundary cells of all the chip inside and we can do scan in and scan 

out of all of them together. Now this is the advantage which boundary scan offers. Now this 

chips can now be coming from different manufactures also it is not necessary that they are 

manufacture by the same company. So if they comply with JTAG standard they can put the chip 

and the same board and yet have the capability of boundary scan. Now it is not necessary true 

that always you have to change all the chips together in the same scan chain. So I have another 

example.  

 

(Refer Slide Time: 50:15) 

 

 

 

Here also there are four such chips. But we have some kind of a parallel operation. So it is up to 

the user it is up to the designer that means what kind of testing mechanism is desired. So you can 

have parallelism okay. Here you see TDI the test data input is feeding 2 chips simultaneously. 

Similarly there is another test data okay this TDI is feeding this 2 together and you look at this 

one. So after falling through this change this is entering the second chip. Similarly this one is 

flowing through like this. TDO is one they are all type together. So it says that you can parallel 

test these two. But since you have one TDO you can do it one at a time. But if you have two 

different TDO’s, then you could have tested them together parallel okay. So depends what kind 

of resource you have you can have some change together you can have  two blocks which you 
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can do in parallel and so on. So this boundary scan is a very flexible method using which you can 

carry out or you can plan your testing activity exactly how do you want to do the testing. Now 

just to give you an idea regarding the kind of signals.  

 

(Refer Slide Time: 52:06) 

 

 

 

That we have in the TAP controller or test access port controller. So the TAP controller this was 

shown in the diagram previously, so just I am showing the diagram once more this diagram has 

so many signals okay. These are all going into the TAP controller. So I am showing always I am 

briefly telling you what the signals here. Of course you have a clock, test clock input. Now 

during testing you can run this clock at a different rate from system clock it is not necessary that 

it should run at the same clock frequency. There is a test mode select pin. So here you can switch 

from normal mode to test mode. This is a test data input through which you can scan in the test 

data you can also scan in instructions. And you can do it in parallel you can used to shift in 

vectors of one or many test instructions. So you can basically shift in data which can go to one or 

more than one such boundary models together.  
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(Refer Slide Time: 53:23) 

 

 

 

There is a test data output which can serially shifts out the results it is a test reset. Well this is 

optional where just using which you can you can reset the TAP controller. Because TAP 

controller maybe in some state. You wont to reset it and you can start a new testing cycle. So this 

test reset is a signal is which you can reset they TAP controller FSM.  

 

(Refer Slide Time: 53:55) 
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And I am not going into the detail these are some of the typical instructions which are there in 

the boundary scan sample preload execution test intest RUNBIST that there are many. So using 

this you can test the functional models you can test the interactions you can just run BIST inside 

a chip and there are number of other you can put one of the models into the bypass mode and so 

on. So it is quite flexible in that sense.  

 

(Refer Slide Time: 54:28) 

 

 

 

Just to summarize boundary scan has emerged as a standard. And there are many chips and 

products which are now in the market which are based on this standard. If you have multichip 

modules for example in a chip, so unless you have boundaries can standard it is very difficult to 

test such. And boundary scan standard is totally flexible its supports built in self test its supports 

external testing with ATE. And you can have scan chain reconfiguration also. And it has been 

widely used many environment in the industry. So here we try to give you very rough overview 

about the about the essential idea of the concepts in the different aspects of testing process. We 

talked about test generation faults simulation design for testability built in self-test and boundary 

scan. But we only try to give you can say any introduction to the problem but there are a number 

of other problems involved related problems involved which need to be taker need to be address 
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need to be solved. If we want to have if you want to arrive at a chip or a design or a testability 

scheme which is practical and cost effective and of course to be attractive to a large community 

of users.      

 


