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Last lecture we had looked at the way in which we can represent behavioral specification or a 

design namely through the control and data flow graphs the c d f g. And we had also mentioned 

that during high level synthesis we need to go through number of different steps like scheduling 

allocation or unit allocation or binding. And in each of these steps it is that intermediate data 

structure c d f g which is manipulated or modified in order to get a more and more desirable and 

more and more efficient version of the same. So we would be looking at the steps one by one. 

But before that one thing you should remember that if you have a big design big specification to 

handle then typically the c d f g itself would be very big. So instead of manipulating a very big 

data structure it is always advisable or better to break the data structure up into smaller parts and 

then manipulate or process each of them individually.  
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So there is the need to do something called partitioning on the data structure during the process 

of high level synthesis. Now in fact this process of partitioning is useful not only for high level 

synthesis. But as we would been seeing later that this partitioning is required even for other steps 

in the VLSI design circuits. You typically during the back end design phase or the physical 

design step.  
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So just as I have just mentioned circuit partitioning is required in various steps of high level 

synthesis. Scheduling allocation unit selection or binding these are the typical steps in high level 

synthesis process. And in each of these steps we may need to carry out partitioning. Partitioning 

of the problem we are tackling divide a bigger problem into smaller sub problem so that they 

become more manageable okay. And as I just mentioned that the techniques for partitioning that 

we would be talking about with respect to high level synthesis the same techniques can also be 

used for physical design automation tools and steps also. So, talking about partitioning to start 

with.  
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Let us try to understand what is the basic problem what do we mean by partitioning. Partitioning 

means as an input we would be given some kind of a netlist okay although we are calling it a 

netlist but with respect to hardware description with respect to high level some high level 

synthesis this can as well be the c d f g. c d f g is also like a netlist comprising of the basic 

symbols in that flowchart kind of a notation okay. So that is some kind of a netlist some kind of 

nodes and their interconnection. This also we can call some sort of a netlist. And we have some 

kind of an objective function which we want to achieve or optimize. See when you talk about 

partitioning we basically talk about given a big structure of netlist, we want to divide it up into 

several parts.  

 

And one of the primary objectives of this partitioning is that the different pieces which you call 

clusters they should be approximately of the same size. Not only that see across the partition 

boundaries the number of lines which cross that also should be minimum. So if we see that we 

have made a partition but there are number of lines crossing that will not be not regarded as a 

good partition. So a good partition is one where the number of lines crossing the partition 

boundary is also less minimized. So let us take a simple example to illustrate this. Yes [Student 
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Noise Time: 05:39] lines, I will take an example you will understand you will understand what 

do I what I mean by the lines crossing I will take an example.  
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So let us take an example of a circuit. This will be easier to apprehend. So let us take a netlist of 

gates. So there are 6 inputs and there are also some flip flops. This is flip flop 1. The output of 

flip flop 1 is feeding to another flip flop flip flop 2. The output of which is the final output. 

Similarly the output of this and gate is feeding a third flip flop; flip flop 3. This may be feeding a 

NAND gate this output. And these may be the clocks of this flip flops. So this is just a 

hypothetical design. Say this suppose this our original design which you want to partition into 2 

parts. Now let us give some names to this clock signals atleast lets call this n 1, this n 2 and this 

one, n 3. Okay. So this is a netlist of gates but before we start the process of partitioning we, just 

it is advisable to represent it in a slightly more abstract form.  

 

Like the same thing we can represent in the form of a graphs, where the components or the cells 

will denote the vertices and interconnection will denote edges. So we can have graph kind of a 

representation like this. The primary inputs are shown like this and these are the flip flops this 

output this is the flip flop number 2 this is z. And from here again you go to this NAND gate this 
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is that NAND gate from the NAND gate you come here from here you go to n 1 from here you 

go to this NAND gate as well as to n 3. So this is your netlist graph now this graph I have 

constructed from a given circuit this graph you can also construct from a given c d f g okay. So it 

does not even matter whether you are trying to partition a netlist or the c d f g the net thing is that 

you have a graph available with you okay. So this is a graph available with you and I want to 

divide it up into 2 parts.  

 

Well there are algorithms to do that we will be talking about the algorithms. But let me show you 

a typical cut or a partition. See a typical good partition in this case will be to cut it like this. Why 

number one thing is that you just look at the sizes of the partitions. In 1 partition there are 3 

nodes in other partition there are 4 nodes. So they are approximately equal and also you see 

number of interconnecting lines that are crossing the partition that is also 2 not much. So the idea 

behind the partitioning is that once you partition a problem the constituent sub problems will be 

handled independent independently. So possibly this particular design will be synthesized in 

terms of say modules like there will be 1 part of it where a b will be the inputs z will be the 

output. There will be another block the second part c d f g.  

 

These are the 4 inputs and this will go to this n 1 and n 2, n 1 and n 2 will be going to the other 

block. So the idea of this partitioning is this you can synthesize this 2 independent partitions in 

terms of 2 independent modules with the number of interconnections between the modules 

minimized okay. So even in terms of layouts if you design and synthesize this modules 

independently they may be located a little far apart if the number of interconnecting lines is less 

the cost of interconnection will also be reduced. So that is why we also say that the number of 

lines crossing the partition should also be minimized okay. Before going into the actual 

algorithms which people use for partitioning.  
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Let us talk about behavioral partitioning when you are using say a high level language say like 

Verilog or vhtl for description let us look at this. See in Verilog there are 2 ways you can 

implicitly define the partitions well here the user when he or she is giving the specification can 

implicitly define the design partitions say by defining modules. Say a Verilog port can be divided 

up into several modules and each modules becomes a natural partition. Now typically when the 

user defines the modules. So the design description or the design structure is captured there in 

itself so the user knows that these are the natural partitions and the number of interconnected 

lines will be less naturally.  

 

So this is one way from a Verilog description you can capture the partitions and another way is 

that whenever even inside a module there are several always blocks. Now the always blocks 

according to the semantic they are supposed to be executing concurrently now since they are 

executing concurrently they cannot be synthesized independently. They can also be considered to 

be independent partitions which can be designed and synthesized together. So if there are several 

concurrent always blocks then each such block can also be regarded as a partition. But these are 

just some guidelines when you are using a language like Verilog for description okay but it is up 
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to the cad tool exactly how it will be defining the partitions and manipulating with it. In fact 

there are many algorithms which have been proposed for partitioning.  
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Broadly they can be classified into 2 classes. One the first class is called constructive they are 

called constructive because you are trying to construct the partitions from the scratch they are 

slowly growing in size in that sense you are saying that they are constructive. Each partition 

starts with very small it slowly grows in contrast iterative improvement methods they start with 

some partition and it tries to improve upon it. So it is not that the clusters are growing in size 

here the clusters are already existing some initial partition you start with and from there you try 

to improve upon the partition. See you will see that some of the constructive partitioning 

algorithm are very simple and that means you can you can immediately understand they will not 

give very good result. But they are used as the initial partition for iterative improvement schemes 

okay. So let us look at this schemes one by one.  
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Starting with the random selection it is the simplest possible scheme. This method says that you 

randomly select nodes one at a time and place them into clusters of fixed size until the proper 

size is reached. Say you have 100 nodes in your graph and the designer says that I need 4 

partitions. So you randomly pick up any 25 of this nodes place them into the first 1 randomly 

pick up another 25 place them in to second. Another 25 into the third another 25 into the fourth 

now since we are picking them randomly obviously the partitioning will not be a good one. And 

you will typically find there are large numbers of lines crossing the partitions okay. So it will not 

be a very good partition.  

 

But it will be a partition where the sizes of the partition are equal that is the only thing you are 

you are ensuring so you repeat this until till all the nodes are being allocated. Obviously if it is 

very fast easy to implement obviously it produces poor results this goes loud saying as I 

mentioned this method is still used to generate the initial partitions for iterative placement 

algorithms. Because the iterative placement algorithms must have some partitions to start with, 

so you can just randomly generate a partition and from there you can start okay. This random 

selection goes about creating the partition absolutely blindly without looking at the structure of 

the graph. But the next one, the so called the cluster growth. 
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This has been explained in an algorithmic form this is one algorithm which does not try to go 

about creating the partitions blindly. But it has some intuitive justification what it is doing so 

here let us try to understand what the algorithm is. Suppose v denotes the set of nodes in the 

graph and m is the desired size of each cluster. So the number of cluster will be n equal to 

cardinality of v divide by m this will be the number of clusters. So in this outermost loop for I 

equal to 1 to N well we are creating 1 cluster at a time first say I equal to 1 we are going to create 

the first cluster this is for I equal to 1. Now what do we do we start with the vertex with the 

maximum degree the vertex which is most strongly connected to the other nodes we start with 

that. See we do this because the vertex which has the maximum degree that possibly will create 

the maximum problem in terms of the number of lines crossing.  

 

Degree means node and how many lines are either falling into it or coming out of it inputs and 

outputs totally. So intuitively what we are trying to do is that we pick up the maximum degree 

node first and try to put in nodes 1 by 1 into it which are most strongly connected to it. You see 

this is our initial seed is the vertex in v with maximum degree vi this is the partition we are 

calling vi, vi initially contains only the seat only this one node. And the original vertex set we are 

removing seed from it because we have already placed it. And in an inner loop the size of each 
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cluster is m we have to put in j equal to 1 to m minus 1 we have to put in m minus one more 

nodes. So in this loop we select a vertex which is maximally connected to the nodes already 

present in vi. So initially vi contains only 1 so let us select 1 node which is connected to it by 2 

arcs say that will be t you add t to this and remove t from the original set.  

 

Next time when you select another node you select 1 which is maximally connected to the nodes 

which are already placed in this way we are trying to put in nodes which are most strongly 

connected to the nodes already placed there. So this are the intuitive justification this strongly 

connected ones will go into 1 cluster total number of lines you count you count the total number 

of lines. When I am selecting this so I am counting how many lines are going to this node how 

many lines are going to this node some total coming or going out number of lines that are getting 

connected. So this is obviously much better than random placement because it has some intuitive 

justification. But the problem is that it is a greedy algorithm. I am always trying to move towards 

the best possible alternative at any given step so globally it may not give the best possible 

solution but it will give a reasonably good solution. This again is used as the initial placement for 

alternative placement series fine. And another scheme which is used for this constructive 

placement is called hierarchical clustering.  
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This method is also interesting see here what we say is that we consider a set of nodes or objects 

whatever we call and group them depending on some measure closeness. So well in the earlier 

method we were already doing that in the method of cluster growth we were already doing the 

same thing. We were grouping them using some measure of closeness but the way we are doing 

this is different. See in the earlier case we were constructing 1 cluster at a time but here we 

would be hierarchically constructing some kind of a cluster tree that we will see a little I will just 

take an example. The idea is that you identify the 2 closest objects or the nodes in the graph if 

the 2 nodes which are most strongly connected among themselves you put them into 1 cluster. 

And you consider the pair to be a single object or a single bigger cluster you can say for future 

processing and you repeat this process.  

 

Now the next iteration that bigger cluster comprising of 2 nodes will be treated as 1 and again 

you see which are the 2 nodes, which are nodes which are strongly connected. And in this way 

you go on constructing in the form of hierarchy step by step you do this and we stop when 

everything has been taken together and we have a single big cluster. And we will see through an 

example that we have or means we are constructing a hierarchical cluster tree in the process now 

once you have the tree we can cut the tree in any way we want to create any number of clusters 

we want. We will illustrate this with an example that means what do we mean by the cluster tree 

and how we can cut that tree. Okay.  Let us take a simple example.  
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Suppose I have a graph like this, v 1 v 2 this is v 3, v 4 and v 5 these are the nodes between 2 

nodes there can be several interconnecting lines. Because the nodes may not be as simple as 

gates it can be bigger modules also so lets also give some weights to the edges which will 

indicate the number of edges crossing 7 5 1 4 and 9 say. So once you do this now you try to find 

out which is the pair of nodes which are most strongly connected. In this graph we can obviously 

see v 2 and v 4 their weight of edge is 9. Okay, so in the first step what you do you transform this 

graph into 1 which looks like this v 1, v 3 this node will now become a macro node. I am 

showing it by double circle this will be connected to v 5, this node I am calling v 2 4 this is a 

combination of 2 and 4. So this 2 and 4 we have combined okay into 1 this numbers denote the 

number of wires connecting nodes v 1 and v 2 number of wires connecting v 1 and v 2.  

 

So now again you come you just put down the weights of this edges say for example when you 

put down the edge from v 1 to v 2 4 it will be the sum of the weight v 1 to v 2 and v 1 to v 4. But 

v 1 to v 4 there were no edges so it will still remain 7 okay this will still remain 7 this will be 5 

this will again remain 1 because there is no edge from v 3 to v 4. This will also remain 1 this will 

also remain 4 okay so in the next step you again look at the smaller graph 7 is the next largest 

weight so next step you get a graph like this. You combine v 1 and v 2 4 so you will be getting 1 
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node which is v 2 4 1 2 4 you are adding 1 to it. So from v 2 4 1 you have 1 node which connects 

to v 3 another node which connects to v 5 okay. So here we have combined v 1 and v 2 4 now 

here when you try to compute the weight v 3 v 3 at a weight 5 with v 1 and 1 with v 2 4 so it will 

be 6. But v 5 only 1 edges was there it will remain 4 so from here the next step will be you will 

be combining v 3 and v 2 4 1.  

 

So there will be a node v 2 4 1 3 and a node v 5 which will be joint together and the weight will 

be 4. And in the last step even these 2 will be combined together and you will be getting a single 

node v 2 4 1 3 5. So this is how you are combining the nodes and you are ultimately leading up 

into a single big node. But if you represent the way you are combining with a tree okay I am 

drawing the tree. Now you see how the trees can initially we had combined v 2 and v 4. So this I 

am representing like this v 2 and v 4 were combined to get a node v 2 4 next step v 2 4 and v 1 

were combined so v 2 4 and v 1 were combined to get a node v 2 4 1. Next step v 2 4 1 and v 3 

were combined to get a node v 2 4 1 3, v 2 4 1 3 and v 5 was combined so finally v 2 4 1 3 5. See 

you look at this tree now this is the hierarchical clustering tree. This tree was constructed taking 

into account this strongly connected nodes in that order you had clustered.  

 

So suppose our objective is to divide this graph into 2 parts then possibly we will try to cut it say 

where say at this level let v 3 and v 5 remain in 1 cluster if you want v 4, v 2 in another cluster. 

So if we cut the tree see the edges in the tree indicate that the cluster on the left and the cluster on 

the right are not that strongly connected because strongly connected ones will be grouped 

together on the left side. So as you go up the tree the weights of the edges of this tree will 

become less and less and less so if you cut here for an example then 1 2 and 4 will come into 1 

partition. Means you will get 1 partition like this and 3 and 5 will be in another partition. So 

number of lines crossing will be 3. Yes. [Student Noise Time: 29:09] Oh, yeah. Just wait sorry 5 

and 4, 9 and 10. Yeah right this does not insure globally optima this is again a greedy approach 

you can say every time we are getting the best and trying to construct. So this again I am 

repeating this kind of constructive algorithm these are used mainly for generating initial good 

partitions.  
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But through iterative improvement scheme we can improve upon these solutions. So now we 

shall look at the iterative improvement schemes. In fact we will see that in many of the cad 

algorithms this iterative improvement schemes work much better than any you can say 

deterministic algorithm. So would be looking at few of those methods I will be talking about so I 

am repeating these constructive methods are typically used to generate an initial good partition 

okay. But after the initial good partition is created you typically go for some of the you can say 

iterative improvement scheme. Now one of the simpler iterative improvement scheme yes 

[Student Noise Time: 30:25] in this one. So your question is that here we have always 2 partition 

it not it is not necessary too. Suppose we have a very big tree okay we have a very big tree but 

the number of nodes may be 100. So we can choose to divide even to 4 also I can cut it here I can 

cut it here and cut it here. So since this is a tree whenever I cut 1 node it will divide the tree up 

into 2 sub trees okay fine.  
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So we will look at the first iterative improvement scheme. This is a very well known and 

classical scheme this method is called Kernighan lin algorithm. Now one characteristic of 

Kernighan lin algorithm is that this is a bisection algorithm it divides a graph into 2 equal parts 2 

equal parts this is the only thing it can do. Say input graph is partitioned into 2 subsets of equal 
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size but 1 thing you will have to supply with a with an initial partition. And this algorithm will be 

improving upon that okay initial partition can be generated randomly also or using any of the 

other methods I discussed. The algorithm is conceptually very simple well cutsets what is a 

cutsets in a graph while any line which divides the graph into 2 parts is called a cut set and the 

number of edges that is crossing a cutsets is called the cost of that cut okay.  

 

So our objective is to is to get a cut of minimum cost minimum of edges crossing so the 

algorithm goes like this till the cut sets keeps improving vertex pairs which give the largest 

decrease in cut size are exchanged you start with 2 sets. Pick one from this, one from this 

exchange them you pick those 2 nodes whose exchange will give you the maximum gain okay. 

And once you have exchanged them you lock this vertices so that they are not exchanged again 

in the future but this is not always following this greedy path. Sometimes you will see that all 

vertices are not locked yet but still by exchanging you are not getting any improvement then 

what you do if no improvement is possible and some vertices are still unlocked the vertices 

which gives the smallest increase in cost are exchanged.  

 

So you are deliberately going towards the worst solution with the expectation that after that you 

may be you will get 2 vertices to be exchanged which will give you a better say gain. So you are 

trying to come out of the local minimum you trying to get into better solution so this is the crux 

of the Kernighan lin algorithm. [Student Noise Time: 33:52] Kernighan lin algorithm was 

designed for 2 equal partitions there are some other variations of this where you can move 1 

node from a cluster to another instead of exchanging it that version is also there some other 

algorithm is there. Yes there is an algorithm called Fiduccia-Mattheyses algorithm that does 

exactly this you select 1 node from 1 cluster move it to the other cluster so that you can have 

clusters of unequal sizes also. Now so let us try to illustrate this with an example a simple 

example.  
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Let us take a graph like this. There are 8 nodes these are the edges and as you can see we have 

started with a very bad partition. 1, 2, 3, 4, 5, 6, 7, 8, 9. 9 edges are crossing the partition the cut 

well I have shown the final solution side by side final solution you can have a single edge 

crossing the cut. But let us see the steps how we have arrived at this well first from this initial 

graph you will have to check every pair of nodes 1 5, 1 6, 1 7, 1 8, 2 5, 2 6, 2 7, 2 8, 3 5, 3 6, 3 7, 

3 8, 4 5, 4 6, 4 7, 4 8, that which pair if I exchange them gives me the maximum benefit. So this 

step itself has a complexity of n square if n is the number of nodes because we have n by 2 nodes 

in on partition n by 2 in another partition. So the time taken to do this will be n by 2 whole 

square so it is of the order of n square so I am not showing you the detail that means what is the 

cost gain of the pair.  

 

I am showing you the best 1 which can be found you can see that if you exchange 3 and 5 you 

will get the maximum benefit okay this you can do by trial. Benefit means you exchange them as 

a trail and see that what are the number of edges now look now which cross the partition. Now if 

we exchange 3 and 5 for instance the graph will look like this I am showing it side by side if we 

exchange 3 and 5. So now the first partition will contain the vertices 1, 2, 5 and 4. 1, 2, 5 and 4 

and the second cluster will contain 3, 6, 7 and 8, 3, 6, 7 and 8. So now let us draw the edges. Say 
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from 1 there is an edge to 5 6 and 2 5 is in the same cluster now 6 and 2 from 2 1 already I have 

added 5 and 6 5 is here now 6 is here. From 3 6 7 4 6 7 is now here and 4 from 4 3 is already 

included 7 and 8 7 and 8 from 5 these I have included 6.  6 3 is included from 7 to 8 no 3 8 I 

have not included and 3 to 8 there is 1 7 to 8 is 1 that’s all.  
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So now if you estimate the cost of the cut line was like this now the cost of cuts initially it was 9 

the cost was 9. But now it is 1 2 3 4 5 6 the cut size is 6 so it has gone down from 9 to 6.  
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Now you repeat the same step from here onwards say in this graph you again check that which is 

the pair of nodes if we exchange them will give you the maximum benefit. Well here again since 

you have exchanged 5 and 3 these are locked these are not eligible to be exchanged any more 

this 2 have been locked so you check the other nodes which pair will give you the maximum 

benefit. Well here in fact 6 and 4 will give the maximum benefit you will be exchanging 4 and 6. 

So let us see the modified 1 one 2 5 6 and this side 3, 4, 7 and 8. So again you try to draw the 1 

okay 1 2 two 5 1 5 1 6 six is also. Now here from 2 two 6 six is now here from 5 five 6 six is also 

here from 4 3, 4 7, 4 8, 4 7, 4 8, 3 6, 3 7, 3 8, 3 7, 3 8, 7 8 I think this is all. So now you see you 

will get a cut whose cost is 1 in fact in this algorithm you do not get any further improvement see 

if you recall we had said that if all vertices are not locked for example here 3 and 5 were locked.  

 

But now we have locked 4 and 6 also so 1 2 7 8 are not locked so we can exchange with some 

increase in cost but we remember always that what is the best solution we have seen. So far this 

was the best solution we have seen so far we will see that even if we exchange 1 7 2 8 and 

something you will not get anything better than 1 so this will be the final solution which will be 

reported. So this same solution if you draw in a different way you get this. Now when you do the 

partition it is not necessary for the nodes to be interconnected know. My main objective is 
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number of the lines crossing the partition should be less that’s all but these nodes may be disjoint 

also no partition okay. This method is simple it gives good results for many graphs. But it suffers 

from some drawbacks also.  
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See it cannot be directly applicable to so called hyper graphs. Well what is a hyper graph see in a 

typical netlist the output of a gate can go to the input of more than 1 gate. So you have an 

interconnection line which joins 3 nodes this we can call a hyper edge an edge connecting more 

than 2 nodes. Now in a netlist such hyper edges are quite common ofcourse you can break a 

hyper edge into a number of 2 terminal edges but that is a way of simplifying a problem. But an 

algorithm which can directly consider hyper edge may possibly be more efficient okay. So 

Kernighan lin algorithm cannot take care of hyper edges it takes only edges connecting 2 nodes 

at a time. And it cannot also handle arbitrarily weighted graph the way it select the nodes it  

becomes difficult of course could with some modifications you can do this.  

 

This is not impossible to do you can do this and another thing is partition sizes have to be 

specified beforehand. The time complexity is high because in each step as a result complexity 

was n square and the number of steps is n if it goes around n cube and the partition sizes are 



20 

 

always equal. You cannot have unequal partitions right. [Student Noise Time: 43:10]. Now here 

if you want to apply Kernighan algorithm to generate more than 2 partitions it will have to be a 

number which is power of 2 whether 2 partitions or 4 partitions or 8 partitions like that. [Student 

Noise Time: 43:30] Yes yes when you are exchanging 2 nodes as I said we will have to check an 

node of this partition with all the nodes of the other partition. Its and then we have to find out 

which is the best. Yes, yes, yes. [Student Noise Time: 43:45] Yes. You are saying that in this 

example in the second step we have exchanged 4 and 6 now what is the question. First step we 

have we have exchanged 3 and 5 [Student Noise Time: 44:05] lock to the everyone else you are 

not exchanging them any more yes. [Student Noise Time: 44:18] weighted graph it can handle 

with some modification the way.  

 

The way you compute the cost if you also incorporate the weight in the calculation you can 

handle as I said this is not a very strong restriction you can do it. See it is not handling hyper 

edges like that it is it is handling see the graph which is give as the input to the kl algorithm their 

all edges are connecting 2 nodes only. There is no edge which is connecting 3 nodes like you 

have in an netlist graph suppose the output of a gate goes to 3 different gates you break this up 

into 3 different edges. But it would have been hid away much better if we have treated the 

collection of those 3 edges as a single edge a single edge connecting 4 vertices [Student Noise 

Time: 45:16] better optimization yes. But as you will see that the that most of algorithms do 

break a hyper edge into 2 terminal edge because of the ease of manipulation. [Student Noise 

Time: 45:34] Yes, yes and Kernighan lin algorithm works pretty well. But there is an interesting 

you can say improvement to the kl algorithm which was suggested let me talk about this.  
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This improvement is called Goldberg Burstein algorithm. Well this is not a new algorithm this is 

a way to make the kl algorithm run better. See statistically it has been found that the Kernighan 

lin algorithm the way it works the performance of it it depends on the density of the graph that 

how dense are the edges r is defined as the ratio of the edges to the vertices in the graph number 

of edges divide by the number of vertices. It has been found that Kernighan lin algorithm gives 

very good results if r is greater than 5. But if the graph is a sparse graph not many edges then the 

quality of the result is not that good.  

 

And it is also been found that for a typical VLSI problem the value of r is much less than 5. No 

the idea behind Goldberg Burstein is that some how if we can reduce the value of r and then 

apply Kernighan lin algorithm then it will work better than what it was doing earlier. So the idea 

we will illustrate with an example this is basically a graph theoretic transformation given a graph 

you try to find a matching and try to contract the edges in the matching by doing that you will be 

reducing the value of r in the resulting graph well I am just trying to explain this example it will 

be easier for you to understand. 
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I have taken I am taking a simple example suppose this is a given graph these are the edges in 

this graph you try to find out a matching. Matching is a set of edges which connects only 2 pair 

of nodes and the matching set which you take there is no overlap between them that means you 

cannot define this to be a matching and also this to be another matching edge. The vertices 

should all be disjoint 2 edges in a matching must be having disjoints set of n vertices so for this 

graph this is 1 possible matching shown in pink. So what the Goldberg Burstein algorithm says is 

that you first identify a matching in a graph bigger the graph more number of edges like this you 

can identify and then you contract this edges by merging this 2 into 1 wherever possible.  

 

So you now get a graph which looks like this so actually these vertices are contracted vertices 

contracted vertices where in each of them represent actually 2 vertices. So essentially each of 

these represent a pair and what you have gained in this is that in this new graph the value of r is 

less as compared to this. Matching edges is that matching is a set of edges whose end vertices are 

all disjoint so this is just an improvement of kl just after you do the contraction we apply kl 

algorithm for partitioning. Then after partitioning you again expand these macro vertices. Okay.  
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But the most widely used and most popularly used you can say iterating improvement algorithm 

is something called simulated annealing. Well simulated annealing the details of this algorithm 

we would be discussing a little later when we talk about the physical design automation steps 

like placement routing etcetera. Now you will see that the simulated annealing algorithm and you 

can says its sister there is another algorithm called genetic algorithm these 2 algorithms are very 

widely used in VLSI design where the search space is very huge. And you can understand by the 

different steps involved in this algorithm that this is not a deterministic algorithm at all it tries to 

simulate the annealing process in metals.  

 

Normally when you try to form the metals you raise it to high temperature then slowly cool it 

down that is a cooling sequence just falling a cooling curve you have to cool only then it will 

crystallize in a proper way. Now this algorithm involves a number of things you have to have a 

way to represent a solution you have to have a way to evaluate the solutions which is more costly 

than the other. And you define some moves where you can modify your solution to get a new 

solution there are some termination conditions so the idea is like this you start with an initial 

solution you apply a move. And if the move leads to the best solution you accept it if the move 
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leads to a worst solution you accept it with a probability and value of the probability becomes 

less and less and less as the number of iterations goes on.  

 

So initially you can accept a worst solution with a higher probability but as the number of 

iteration goes on that probability values goes lower and lower this is basic idea behind the 

method. And this is found that for problems which are big where the search space is huge no 

deterministic algorithm can handle it in a reasonable way. These methods give excellent 

solutions in fact many algorithms in VLSI cad are implemented using simulated annealing or 

genetic algorithm. So the all these things we will be discussing later when you go into the VLSI 

back end design algorithms we will be talking about these things. Thank you.   


