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I have talked about two-level optimizations. Today we will be extending our discussion. We will 

be talking about multilevel logic minimization or optimization. We have mentioned that there are 

many circuits for which multilevel logic optimization proves greatly beneficial as compared to 

two-level logic. We will start by giving an example of such a circuit for which multilevel 

minimization helps greatly.  

 

(Refer Slide Time: 01:45) 

 

 

 

There are a few things you need to look at that when you talk about multilevel realization. It is 

not only just the number of levels we talk about; there is also another thing which needs to be 

looked at. That is the number of inputs to the gates which are required. As I had mentioned that 

as you have a gate with high number of inputs, gate becomes slow. Just a simple example. 

Suppose you have a nine input OR gate. Now this nine input OR gate you can implement in two-

level realization like this using NOR and NAND. Apparently you can say that here, there is only 
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one level and here there are two-levels. But in practice this gate is much slower because of this 

high fan in. Because of the high capacity when high impedance the capacitive load has to face as 

I had mentioned in the last class. So, particularly for high fan in gates it is beneficial to break that 

gate up into smaller gates into multilevel logic. So, this is one situation where multilevel logic 

realization makes sense break up a gate with a large number of inputs into multiple levels of 

smaller gates the speed will improve. Well another case is just said that for some kind of logic 

multilevel minimization may prove to be expensive.  
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So let us take one example of that category. That example is the XOR function. XOR function if 

you recall it is a circuit where let us just take a eight input function. For an eight input function, 

say I have an XOR gate; I have eight inputs all right. Eight input functions, I can, suppose I want 

to realize this in a two-level logic implementation. Now in a two-level logic implementation you 

think of an XOR gate what is the kind of requirement you have. XOR gate is essentially a parity 

detector right.  
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So just let me tell you I am drawing this big XOR gate. If there are eight inputs the output will be 

one if odd number of inputs are one odd number of inputs. Means one of the input is 1 3 of the 

inputs are 1 5 of the inputs are 1 7 of the inputs are 1. Actually how many such combinations are 

there? The number of combinations will be just out of 8. So how many ways I can have one input 

to be made 1 3 inputs 5 and 7. This makes 128 and another thing is that one characteristic of this 

XOR gate is that the true min terms for an XOR gate. The true min terms have a distance of 

more than one which means they are never connected by a single edge in the cube representation. 

If they were connected by an edge they could have been combined in a cube. But for example for 

a 2 input function, say if you have a XOR b, the function says a NOT b OR a b NOT. They 

cannot be combined.  

 

Similarly for 3 input, 4 input XOR they cannot be combined. So whatever number you have 

obtained here, that will give the number of NAND gates and since there are 8 inputs each of 

these NAND gates would be having 8 inputs. So you need this number comes to 128. You need 

128 input NAND gates. So in the first level you will be having so many NAND gates and in the 

second level you will be having one big NAND gate feeding all these 128 input NAND gates. So 

you try to understand that these eight input XOR I can very easily implement in a two-level 
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implementation two-level realization. But I am getting, I am requiring 129 gates all of them 

around very big sizes, say one of them is of extremely big size 128 input. 
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So this is possibly not practical. Now let us try to think of the other way round. So how do we 

do? It can we break this up into multiple levels and do it.  
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See this 8 input XOR, you can also implement like this by using smaller 2 input XOR gates. 

Suppose we have something like this. We use cascade of XOR gates like this and you please note 

all are 2 input XOR gates. So we need seven 2 input XOR gates and each 2 input XOR gate can 

be implemented like this. So effectively each NAND gate each XOR gate is equivalent to three 

levels of NAND and there are three levels of XOR. So we have nine NAND levels in total. But 

the advantage we gain is that we need only 4 into 728, 2 input NAND gates. This is the big 

advantage we get.  
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So we require 28 two input NAND gates. Number of levels have increased some what but as I 

have again mentioned. The delay of this alternate realization will be much less as compared to 

this simplistic realization. So this particular example tells you or shows you that there are some 

examples of circuits for which two-level realizations are not feasible. We must go for multilevel 

realizations and for multilevel optimization there are a number of methods which have been 

reported. 

 

 

 



6 

 

(Refer Slide Time: 09:17) 

 

 

 

Now, broadly these methods can be classified into local and global. Local means that you look at 

one of the equations or one of the outputs at a time. You try to do some kind of local 

optimization into a net list you look into a circuit. You look into the small part of it and try to do 

some optimization there global optimization. Means you look at all the functions at the same 

time and try to do some transformations on all of them so that you get some optimization. Now 

since we are looking at the whole problem at the same time, this is called global. In contrast the 

earlier method is called local. So let me try to give you some idea that how this local and global 

transformations work. So as you can say it is written here local transformation. Local 

optimizations are based on some kind of rule based transformations lets say what kind of rules.  
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So the objective of this rule based transformations are of course same reduce area, delay or 

power they are again mutually conflicting. So in this method the main problem is to develop a 

good set of rules. Because you have a set of rules which you repeatedly, apply to a net list in 

order to improve upon it. You have a given net list, you have a set of rules you see that whether 

you can apply a particular rule to the part of the net list if you can you get an optimization out 

there. So you will have to enumerate as a designer. The list of all such rules you need to apply 

and check for this kind of local optimization on the circuit and again these rules should be 

comprehensive enough. Now the basic idea is just what I have just mentioned that you apply one 

of the transformations to a given net list which reduces the cost of implementation. And you go 

on iterate this, is a greedy approach. You iterate and continue applying transformations as long 

as you get better and better solutions. So this is a purely greedy approach it is applied on a given 

net list based on a set of rules. Now the kind of rules that are user applied are fairly simple.  
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So the first sets of rules are like this. These are called simple AND or transformations. I have 

shown some of these rules. Many of them are based on simple. You can say simple identities of 

Boolean algebra; a AND one equal to a, a OR 1 equal to one these kind of things. So if in a 

circuit you encounter, for example this, if you encounter two NOT gates in cascade obviously 

you will replace everything by a single wire. So XOR of some input set of inputs AND b is the 

same as the single XOR gate with all of them as inputs. So this means if we have XOR of some 

inputs and another XOR of some other input then you replace it by a single XOR gate with all 

the inputs. So this kind of rules can be there. Many of them these are very simple rules fairly 

simple rules.  

 

You just apply these rules one by one. Now another thing is that most of the practical 

implementations or realizations are based on NAND-NAND or NOR-NOR logic. Now this 

requirement comes out from the ultimate because of the target you are trying to implement on 

typically CMOS and you know CMOS can realize only negative gates NAND, NOR this kind of 

things. So in general after these transformations you will be getting a net list which will contain 

AND and OR. So after the total we are doing after this AND OR transformations. We will be 

translating this AND and OR gates to NAND or NOR form. Now you know that how a NAND 
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gate can be, how a AND gate can be converted to a NAND gate NAND followed by a NOT. 

Similarly OR to NAND which you know.  
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So after doing this transformation, we will be getting say I am giving an example. Suppose you 

had a circuit like this and, AND followed by an OR. Now, after doing this transformation what 

you get is this. AND will be replaced by NAND followed by NOT and OR will be replaced by 

NOT; NOT this kind of thing. So you see that after you do this kind of translation, these kinds of 

chains of NOT gates are very common. You can combine this to a NOT gate and you can make it 

a single one you can replace them by a single wire. So after this transformations number of 

additional optimizations will come up which you can apply. But here the advantage is that you 

need to concentrate only on NAND or NOT.  
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So there are a second set of transformations you need to apply here. These are called NAND, 

OR, NOR transformations. Now here after this is done you can very well assume that all gates 

are of the same type. Typically we use NAND more often that we use NOT. So since all gates 

are of type NAND and which is one of the basic gates, you do not require any specific 

technology mapping. Because NAND is always a part of any library and now we have a set of 

rules which are framed based on NAND or NOR networks like we have an example out here. 

This example means if you just what it means NAND of a and b which means we have NAND of 

a and b. NOT of that NOT of that NAND of that and c, there is another NAND c. See what this 

rule says that, if you see that you have a net list like this, a sub graph like this entire thing is 

equivalent to a three input NAND. So you can replace it by a 3 input NAND. Similarly if you 

have NAND of a b c NAND of a b c bar, NAND of that c goes you simply have a two input 

NAND.  

 

So here I have shown only a couple of rules. But there will be a big set of such rules which you 

can apply to this NAND level net list and you can carry out optimization. But you try you see 

that this now becomes a search problem. The given net list which you have that is like a big 

graph and the rules that you can potentially apply on them to carry out optimization. They are 
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like small sub graphs. Now you will have to search the net list for presence of those sub graphs. 

And if you see that one of the sub graphs are present. You can apply that rule to carry out the 

optimization. And more you do the optimization your circuit will become smaller and faster. So 

and I said that this is a greedy approach. Here you look at some rules and you look at some parts 

of circuit where that rule can be applied and you straight away apply that. But here you are not 

looking at the total picture at a time; looking at say all the functions, looking at how to make 

transformations to the circuit. So that you can say globally you can have some optimization. We 

are not looking at that we are looking at some local benefits by making some transformations 

here and there. So talking about global optimization.  
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The technique we mentioned was used in a package called Socrates. This uses a method called 

weak division. Say idea is very simple. This is a very well known method which has been used 

for a long time by the compiler writers. Basically you try to identify the common sub expressions 

and you try to divide them out.  
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See common sub expression means if you have, say if you have a function a b plus a c well, 

which you can write as a into b or b plus c. You have another function say only b OR c, then you 

can see that this is a common sub expression and instead of evaluating it twice why do not you 

evaluate to only once? This f 1 instead of writing a, into b plus c, I can simply write a, into f 2. 

So I can save one OR gates. So the idea is this that if you can identify the common sub 

expression you evaluate to only once using gates in that you use it in the other place. So you can 

save on the hardware. Now in this approach you use the following iterative steps. Idea is again 

simple.  

 

You find out all possible sub expressions which are common to two or more Boolean equations. 

Now after that you try to evaluate. Suppose you see that there are four possible sub expressions. 

Now you try to find out which one of them is better there must be a way to evaluate. Now the 

one which is best you find you use that for factoring the equations and you go on repeating this. 

So select a sub expression to divide based on the goodness measure; we will show how we do 

that. Then we actually divide the functions now see dividing up into sub expressions. And using 

this is something like division. That is why the term weak division is used. Now I am explaining 

these steps with an example.  
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Suppose I have a problem like this. There are two equations. Two expressions to be solved; 

actually this corresponds to a circuit comprising of two outputs f 1 and f 2. This, a b c d e f g are 

the inputs gate. Now our measure of goodness is simply to count the number of literals. This is a 

fairly you can say accurate approach and many methods simply count the number of literals in 

order to estimate the cost of implementation. Now in the original one how many literals are 

there? 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18. So in the initial problem number 

of literals was 18. But if you look at these expressions now and you try to find out what are the 

common sub expressions which exist in any one or more than one. First you see b c b c is present 

here, here, and here a b; a b is present here and here a, OR b. Well a, OR d you can have from 

here by factoring by taking b c common a OR d that is all b g is here and b d is here.  

 

Now for each of these literals that you estimate that if I use this factorization that how many 

literals I am saving. So I am not showing the detailed step. Actually what we will do is that, 

suppose you select for example a b a b is the sub expression you select. So you actually generate 

a b from some other a b is here. Suppose you write u equals a b and u use here as well as here 

and you count how many literals you are saving in the process. So this process will repeat for all 

the possible sub expressions you find that for this particular example b c gives you the best 
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benefit. So you select the sub expression b c. So after the first iteration you modify the equations 

by replacing b c with some variable u and where ever b c is there, you replace it by u. Here also I 

am factoring at the same time for the next step. So this is the new equation. Now here you find 

that the number of literals is 14. So we get a saving of 4. So you go on repeating this. So you 

have this with you you have this.  
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This is now the result at the end of iteration one. Now you check the sub expressions now b g 

gives you the best benefit b g. So the next iteration you select b g is here as well as here. So 

define another variable called v. So now the literals become 12, after this you find that there is no 

other common sub expression that you can find. So we will stop out here. So after doing this 

factoring and this division you get you get a modified specification. You can say where the 

common sub expressions are not there and where ever the common sub expressions were there 

you had utilized them by division and you have reduced the number of literals out there.  

 

So you had obtained some implementation which will be more efficient in the process. Now the 

problem with this kind of an approach is that every time you are trying to go from a given 

solution to a better solution. So, essentially this is a greedy algorithm every time you are 



15 

 

selecting the best approach. So I am again repeating any algorithm which always tries to go for 

the best alternative in the present scenario has a great chance of getting stuck into a local 

minima, it may miss out the globally best solution. It can get stuck into a local solution which 

may be far of from the best solution. 
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So this is a greedy algorithm, it can get stuck into a local minima, and where ever, which ever 

method has a chance of getting stuck in a local minima, some how we give a jerk or some kind 

of randomness to come out of the local minima. So in terms of the contour of the solution space 

like this, if it is greedy it will always go down. You will go stuck out here. But from here, if you 

give a jerk like this, somehow may be, may be, from here you can start exploring another part of 

the solution space and you can get to another solution which is better lower cost. And another 

thing is that generation of all candidate expressions is expensive. I have taken a very small 

example. But imagine if we have a very large number of equations, with very large number of 

variables, generating all possible sub expressions which are common, that it itself is an expensive 

process. So some kind of heuristic must be used. Now in fact there are many multilevel 

optimization packages that are being reported and are used and one of the methods. I mentioned 

very briefly about is one of the more successful and the most popularly used method.  
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This is called MIS multilevel logic interactive synthesis. Now this MIS also uses factoring of 

equations just like the weak division we just mentioned. And one thing out here is that this MIS 

specifically targets CMOS gate as the target technology. Target technology CMOS means that 

what ever equation I write, it is a negative equation because I am showing you why. Let us take 

this example. This is a three input NOR gate. Now in CMOS a 3 input NOR gate will look like 

this.  
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These are the three PMOS transistors. And the three NMOS transistors are in parallel. So we 

have a out here, b out here, c out here, a b c. And this is the output and one characteristic of the 

CMOS gate implementation is that it always implements a negative logic. That means f equal to 

a OR, b OR, c NOT, or f NOT equal to a OR b OR c whatever it is. Similarly if we have 

something like this a OR b and d OR e OR f h. This also you can implement very easily. So you 

will be having a pull up network and pull down network. Say I am showing this a OR b. So I am 

first drawing the pull down network there are three parts which are in series first a OR b a b and 

d OR e OR f d e f h. This is the pull down network.  

 

Similarly pull up network will be the complement of this. So it will be parallel combination of a 

b. This will be PMOS a and b. Then there will be another d f another part, three transistors in 

series. This will be d e and f another part will be h. Now this will be connected to the pull up 

network. This also will implement a negative phase. So when I say the target technology CMOS, 

it means we are trying to go for a solution like this. Now you see in this one the number of 

literals were 1, 2, 3, 4, 5 and 6. In terms of the CMOS realization there are six transistors in the 

pull down, six transistors in the pull up. 
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So if there are n literals in terms of CMOS implementation we can very easily compute the cost. 

There will be two n transistors. This is why number of literals used sometimes used to estimate 

the cost of a solution. So MIS specifically targets CMOS gates and for that purpose it uses the 

number of literals as a measure of computing the cost.  
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So basic concept is well at this level it is similar to Socrates it uses algebraic factorization 

identifies common sub expression. But it tries to avoid exponential search using some heuristics 

and for local optimization it identifies two-level sub circuits and minimizes them using espresso. 

So from the bigger circuit it also identifies smaller sub circles in between and it tries to optimize 

them using espresso. So espresso is used as a function which is called from MIS. This is I am not 

going in detail. But this is roughly the approach this is used for local optimization.  
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But for global optimization it uses a few techniques. It scans the whole network it uses simple 

heuristics to clean up the net list like the two NOT gates in series, gets eliminated. This is called 

cleaning up. There is something called constant propagation. Constant propagation means if we 

have a gate with a and a constant one in the output feeding another gate, say an OR gate b then it 

replaces this entire thing by a. So this is equivalent to the simple OR gate a and b this is called 

constant propagation. This constant propagates the value of a here directly. So this gets 

eliminated double invert as I have already mentioned and each equation which you get for the 

sub circuits you use espresso for further optimization because espresso is known to work well 

there. So after doing this, you proceed to global optimization by using factoring and other thing 

which is similar to Socrates.  
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So this is also an iterative approach. So you just eliminate the common factors identify the basic 

candidates etcetera. So equations themselves may be common factors some times it helps in 

inverting a equation. Say you have an equation like f equal to a OR b OR c and somehow you are 

unable to find out any sub expressions. Suppose there is another function g which is a bar b bar f, 

but apparently there are no sub expressions. But suppose invert this equation f dash, then this 

becomes a dash b dash c dash and immediately this sub expression gets exposed. So sometimes 

inverting an equation may expose further factors of sub expressions and again. Since we are 

using CMOS as the target number of literals is used to estimate the total area, right?  
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So let us look at some of examples, it will be clear that how it works. What we are trying to say 

is that in the global optimization step we are using factoring. Factoring means that weak division 

that we are trying to find out the common sub expression and factoring. Suppose you have 

almost you are also going to do factoring sub expression together because there are two things. 

One is common sub expressions other is factoring both will give benefit as we will see through 

examples. So our ultimate target is to do some kind of global optimization technique which can 

lead to a reduction in area. Now an equation may be given in simple sum of products form. It 

will have literals and we have said from the literals. We can immediately count the number of 

transistors for CMOS realization. And our idea is that by identifying either common sub 

expressions or through factoring we want to reduce the number of literals. And if we can reduce 

the number of literals we can immediately reduce the number of transistors in the CMOS 

realization also. Now let us try to look at some examples and see that how it can be done or how 

this is achieved lets take a simple example.  
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Well since it is CMOS realization only negative gates, I assume that it is complement. I want to 

implement this function a b or a c. Now naturally you can do factorization. And you can see that 

through factorization in the first case the numbers of literals were 4, 1, 2, 3, 4 and here this has 

been reduced to 3. So apparently we can expect less number of you can say transistors in CMOS 

realization. Now in a CMOS network there is a pull up network comprising of p type transistors. 

There is a pull down network comprising of n type transistors. This is connected to v d d. This is 

connected to ground pull up and pull down are connected and this is the output. Now pull up and 

pull down network are complementary of each other. So if we show one of them, other will be 

simply complement of that and number of transistors out here is equal to the number of 

transistors out here. So for this function, for example if I had this, a b or a c. Then the pull down 

network would look like this a b a c, four transistors.  

 

This sometimes draws pictorially like this. Just for conveying instead of the transistors just to 

show like this a b a c these dots represents transistors. Instead of drawing, this we will be 

drawing it like this and if you now do the factoring this a b OR c. You can immediately see that 

our drawing this picture now becomes like this is a b c. So instead of four there were three 

transistors in the pull down. So in the pull up also there will be three transistors instead of having 
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two. So number one thing is that if we are able to do factoring, then invariably you are reducing 

the number of literals and hence the number of transistors. So this is one thing you have to keep 

in mind. Let us take another example. 
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This is a slightly more complex example. Suppose you have a function like this f equal to a b e 

prime f OR a b g OR a c e prime f OR a c g OR a d e prime f OR a c d g. Suppose you have a 

function like this, you count the number of literals. You see that they are 22, 7, 11, 14, 18, 22, so 

there are 22 literals. Now if we want to have a straight away implementation of this function, 

then with respect to the pull down network, there will be one arm with four transistors 1, 2, 3, 4. 

There will be another with 3, 1, 2, 3, there will be another with 4, 1, 2, 3, 4, another with 3, 1, 2, 

3, and another two with 4 each 1, 2, 3, 4, 1, 2, 3, 4. So as you can see only 22 transistors in the 

pull up pull down as well as in the pull up. Now if you just I will deliberately manipulate, this 

equation you can see that it can be factorized this equation you can factorize and final form. You 

can get in factorized into this. This is the final form and here if you count the number of literals 

you have 1, 2, 3, 4, 5, 6, 7, 8, only nine literals in terms of the implementation. You have gone 

down from 44 transistors to 18 transistors. This is a significant saving. So simply factoring the 
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equations alone will lead to a great saving in terms of the number of transistors. Well not only 

that you can also use common sub expressions.  
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Like let us take another example. This example will highlight the use of common sub 

expressions. Suppose I have a function f equal to a b c bar plus a d g plus a c bar f. There is 

another function g a c bar d plus a d f. Here again if you follow the method which has been used 

by Socrates something similar to that. We will see that there are common sub expressions. One 

such common sub expression you can identify is a c bar a c bar occurs here, here and here. It 

occurs in three places there is another sub expression a d a d also occurs in three places. So you 

can use any one of them. Suppose we decide to use a c bar. 

So our modified equation will be u equal to a c bar f will become u b OR a d g plus u f g will 

become u d plus a d f. If you count the number of literals now 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

13, 14. Here 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15. So you get 1 reduction 15, it has gone down 

to 14. So you therefore common sub expression, the gain may not be as significant as factoring. 

So factoring is something which you should always try to do when you target a CMOS 

realization. 
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So even after doing this, you will be doing a further transformation using factoring. So u will be 

a c prime for f. You see that you have for common sub expression u. So you take u common b 

plus f OR a d g. Similarly here you have d common in g you take d out u OR a f. So here the 

number of literals has come down to 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, so from 15 you could bring 

it down to 12. So in terms of the implementation, again in terms of the implementation, again 

from here from 30 transistors you have gone down to 24 transistors. So essentially whatever this 

does, is based on transformations like this. Now in the method of espresso there also the numbers 

of literals were used to estimate the cost of the implementation. But in espresso the target 

technology was not necessarily CMOS. That is why there is some inaccuracy in the estimate of 

the hardware. Because they were concentrating only on the gate level net list. I do a 

minimization optimizations, I get a gate level net list. But here since our target is well defined we 

are looking for CMOS implementations. So we have a very fare estimate of the number of 

transistors number of literals twice of that is equal to number of transistors. So that is one.  
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Now in the optimization, what ever we have talked about so far, we had primarily looked at the 

problem of area. Delay is related area we are minimizing number of transistors. Minimum 

number of transistors. Now if our objective were to minimize delay, then we would have 
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followed a different approach the number of levels would be reduced. See this is, this implies 

that we will not do any division. No division because when ever you do division you are actually 

adding one level of logic, right? If you look at the previous example when ever you did this 

division, you have to compute this u and output of u has to go to here. So there is another level of 

logic you are adding. So if delay is more importance, then you should not use division. You use 

only factorization. But when you greater consist power of course power optimization cannot be 

accessed so easily. So there somehow we will have to measure or estimate the amount of signal 

activity in the circuit.  

 

The idea is that in a CMOS gate if the inputs do not change state. The output obviously is also 

not changing state and the quiescent power consumption of the gate is almost close to 0. But 

whenever the circuits switches means the output goes from 0 to 1, momentarily the pull up and 

pull down networks both are turned on. So there is a quiescent current flowing during switching. 

So this switching current of CMOS can become quite significant, particularly when it is run at a 

high frequency. So when you are targeting power optimization we have to ensure that the amount 

of switching in the circuits is reduced as far as possible. There are ways to achieve this. But they 

are slightly beyond the scope of this class. There are ways to estimate the signal transition 

activity in a circuit. Ways to control them by using control inputs by adding additional gates. 

You can reduce the amount of signal transition activities in a circuit.  

 

So today we had looked at some of the basic problems of multilevel logic optimization and we 

had tried to get a feel that how this multilevel optimization tools work. There are some other 

approaches which is also used for practice for the purpose of representation as well as 

manipulation and synthesis of Boolean functions. In the next class we will be looking at one such 

method, it is based on something called BDD’s binary decision diagrams. That is a very efficient 

data structure to represent a function and we will show that using BDD, we can even carry out 

synthesis. We can synthesize a circuit. We can obtain some kind of net list starting from a given 

Boolean specification. And subsequent to that would be talking looking at the problem of high 

level synthesis were from a given higher level description. We can arrive at a register transfer 

level net list from that discussion. We shall start for our next lecture. Thank you.    


