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So electronic design automation, this is the subject we would be talking about in the course of 

the next series of lectures.  
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Before I go into the actual series of lectures let me first tell you what exactly we intent to cover 

in this series of lectures. Well electronic design automation as the name implies what it really 

means is that we have some kind of a design which we want to carry out starting from the 

specification we want to arrive at the final design implementation. It can be an FPGA. It can be 

ASIC. It can be anything.  
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So let us first try to have a quick look at what are the topics that we intend to cover in this 

course. First of course we would be looking at the digital circuit design flow which means that if 

we have a digital design digital circuit specification. What are the different steps that we need to 

follow in order to arrive at the implementation. Well out here we would be considering only 

digital circuits. We would not be considering analog designs. Next we would be looking at 

popular hardware description language namely Verilog. This description language we would be 

using as our vehicle in some of the future lectures. All examples would be given in Verilog. Next 

we would be talking about some topics on logic synthesis. Now assuming that you are already 

familiar with 2 level logic minimization we would be starting from that point onwards. We 

would be talking about multilevel optimization.  

 

A process called technology mapping and of course something called high level synthesis. Well 

in high level synthesis we are trying to arrive at a design a register transfer level design starting 

from a behavioral specification. Then of course we would be considering or talking about a very 

important issue that once we have designed the circuit up to a particular level how do we test it. 

So some issues related to testability and at the very end we would be talking about physical 
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design automation which concerns the issues that comes in at the last phase of the 

implementation namely here we talk about the floor planning placement routing. These issues are 

arising well. Well when we consider the silicon floor, the silicon floor how do you place the 

different components on the floor of the silicon. How do you interconnect them? These issues 

would come in here. Okay. So let me give you a list of some references. Of course this is course 

so diverse. It is not possible to specify or a few books to cover all of them.  

 

(Refer Slide Time: 04:04) 

 

 

 

So I have got a comprehensive list of references. You can have a look at these. So the first 3 

references would be concentrating on the design and synthesis aspects. The fourth we would talk 

about the Verilog description language. The fifth is again synthesis. This concerns high level 

synthesis. Then we have some more references.  
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There are 2 books which I have referred here for testability analysis testable design and the last 3 

books are concerning physical design automation placement layout routing etcetera okay. So 

during the course of this course we would be we would be referring to these books as and when 

required okay. So to start with.  
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We begin by talking something about digital circuit design flow okay.  

 

(Refer Slide Time: 05:21) 

 

 

 

So we look at the digital design process from the perspective of a designer. Now as you know 

that with the advent of the VLSI technology. Now it is the complexity of design is being 

increasing very rapidly over the years. Now today it is possible to have chips which can house 

more than a million trans; multi-million transistor systems are possible on the chip. So design 

complexity is growing design complexity has 2 you can say 2 dimensions. is of course the 

increased size and the increasing complexity to handle a design of that size okay. Now in earlier 

days when the designs were small many of the designs could have been done using some kind of 

a manual technique or semi-automated technique with frequent manual intervention.  

 

But what has happened today with the increasing size of the designs is that nowadays it is 

absolutely essential to have computer aided design tools to assist the design process. So the 

without the computer aided design tools you really cannot handle a design of that complexity. So 

if you look at the way a designer proceeds with designing a typical chip or a circuit nowadays 

there is a conscious effort to standardize the design flow. Design flow as I mentioned just 
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previously it is basically the process which you follow starting from the specification down to 

the implementation. What are the different intermediate steps? Now depending on the kinds of 

CAD tools you have depending on the kind of chip you are trying to design the design flow can 

vary quite widely. So it is essential or necessary to standardize a design flow before you are 

actually trying to design the chips.  

 

(Refer Slide Time: 07:39) 

 

 

 

So this as I had mentioned design flow is essentially the design procedures. Step wise procedure 

which you follow starting from the design idea or specification whatever is called down to the 

actual implementation. Now actual implementation when you are talking about well again I have 

told you. This can be an application specific integrated circuit.  It can be a field programmable 

gate array or it can be any other kinds of programmable logic like PLD’s or any other thing but 

the idea is this. You have a design idea which you specify in some form and using a sequence of 

steps using the CAD tools you finally arrive at the actual implementation at the very end. Now 

out here I show a few of these steps which are furtherer a few more steps also.  

 

Of course the first step is the design specification. Then you carry out synthesis which is 

essentially a design translation from the specification to some kind of a netlist. Some kind of a 



7 

 

register transfer level or a gate level design. Then you typically carry out simulation to check 

whether the synthesized design is correct or not. There can be some problem with the CAD tool 

also. You must be must be hundred percent sure before you actually go for the implementation of 

the manufactory defects okay. Now the simulation can be done at a number of different levels. 

This we will be looking at some more detail later because you can also decide to do the 

simulation after specification itself in order to check whether this specification is correct.  

 

You can do the simulation after synthesis. Well after the synthesis the step after that is typically 

layout where you are thinking about how to place the blocks you have synthesized on to the floor 

of the silicon or in case of FPGA. Well how to place or map the sub circuits into the basic cells 

of the FGPA okay. So these are the layout concerns. Now during synthesis and layout itself you 

often also consider some issues related to testability. This means when you are designing a 

circuit well the circuit is functionally working correctly or not that is issue. The design is correct 

or not that of course is a very big issue but after manufacturing there can be a number of defects. 

There can be some short circuit in the wire. There can be open circuit.  

 

There can be lot of other problem in the transistors. So after manufacturing you have to test the 

chips. Now here I have just told you that you could have chips which can house millions of 

transistors. But externally you can have only a few 100 pins available to you. So just using those 

few hundred pins how do test those million components inside. There has to be some special 

design effort that has to go in during the synthesis processes itself so that during testing it 

becomes easier for the test engineer to test the chip. There are a number of techniques called 

design for testability built in circuit test. These are the things we will be discussing and there are. 

Yes. Design processes are such that testability can be made easier.  

 

Okay that exactly what I have said is that designs are big nowadays. So unless the designer puts 

in some special module some special design you can say design procedures or design rules in the 

process of synthesis it may become impossible for the test engineer to test the chip. Just if I give 

you any arbitrary chip and ask you to test it can become a very big problem for you. But if 

during the design process itself I have incorporated some feature in the chip just using which you 
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can test it easily. It can become very easy for you for testing okay. Fine. Now as I mentioned that 

with the increased size of the chips and increasing complexity the CAD tools are essential.  

(Refer Slide Time: 12:15) 

 

 

 

There is a new generation or a new series of CAD tools which is now available in the market 

which are used by the designers to go through the digital design flow process. Now all these 

tools are based on some so called hardware description languages. Well hardware description 

language means you have a standard way of specifying things. That thing may be your design 

specification that may be your synthesized net list. That may be the layout. It can be anything but 

you have some standardized formats in the form of some language. Right. Basically this 

hardware description language they provide ways of representing the design at several different 

levels okay.  

 

This we will see later that mean by how. So I have mentioned as we go through the different 

design steps your design goes on refining from the behavior to register transfer level to gate level 

to layout. If at each level you can represent the design properly using a description language it 

becomes a consistent format. Well here advantage you gain additionally is that if you follow 

some standard your internal representation may be portable across different CAD tools from 

different vendors. Say there part of a design flow you can do using the CAD tool supplied by 



9 

 

vendor A the other part you can do using a CAD tool supplied by vendor B. So if you are 

following some standard then you have you have complete portability and interoperability.  

 

And typically as I mentioned as you go from top to down from the behavior down to the layout 

you typically go through a series of transformational steps where each succeeding step will 

contain more detailed hardware implementation or means hardware information as compared to 

the previous level from behavior to register transfer level, register transfer level to gate level, 

gate level to transistor level and so on. So these are some of the typical steps of transformation. 

Behavior to RTL. RTL to gate level. Gate level to transistor level. Then finally you can have 

another level. Transistor level to the final layout. Geometries of those layouts the layers okay 

fine. So let us first talk about the hardware description languages.  
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Now you may know that today in the market there are 2 competing HDL’s which have become 

very popular is called Verilog, other is VHDL. Now in this course well here we may choose to 

use any of them. But in this course we would be using the language Verilog for illustrations. 

Well you can do the same using VHDL also. There is no problem. Verilog and VHDL are 2 

different languages with slightly different features. I would be talking about some of the 
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differences that what are the basic differences between these languages. But this I will come little 

later okay.  
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So let me now show diagrammatically a simplistic view of the design floor. Well I am calling, 

calling it simplistic view because this design flow looks like unidirectional process starting from 

top to bottom. These are the, this is the direction of the flow. But in a typical design process there 

can be a few other steps in between and also there can be feedback that in the simplistic flow I 

have not shown the feedback path. Well here my idea is to emphasize what are the different steps 

of the process we need to go from a design idea into the final implementation. Okay. So, here as 

you can see that from the design idea the first thing you try to do is to translate it into a 

behavioral specification. This behavioral specification is typically in the form of in the form of 

hardware description language as I told you either in VHDL or Verilog. Then you go through a 

step of synthesis.  

 

This is step of synthesis where from the behavior you arrive at a so called data path design or a 

register transfer level design where your basic building blocks are registers arithmetic logic units 

multiplexers flip flops and so on. So this is a slightly higher level design okay and from the 

register transfer level design data path design. You typically translate it into logic design where 
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you get a net list of gates and flip flops. Later on from logic design you will have to finally 

translate it into physical design for you to talk about the transistor their layout etcetera and after 

you have the final transistor layout you will have to submit the final design specification to the 

fabrication facility where the chip will get fabricated. This is the process of manufacturing.  

 

So finally after the process of manufacturing you will get either the chip or a collection of chips 

in the form of a printed circuit board and these are the intermediate forms you can see. After the 

behavioral design you can get during synthesis something called a flow graph or a pseudo code 

representing the net list. So after RTL design you get a structure register structure which consists 

of registers, ALUs, arithmetic units, multiplexers. They may be interconnected by bus buses. 

Logic design will generate a netlist of gates and flip flops. Physical design, we will talk about 

transistors and their layouts and so on. So this is the simplicity in view of design floor. (Student 

Noise Time: 18:51) Data path design is the same as the RTL level design register transfer level 

design. Yes okay. Now before actually going through these steps let us look at the design process 

from a slightly different perspective.  
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See a design, this design may be in the behavioral level. It can be in the structural level. It can be 

in the logical level. It can be even in the layout level. But in whatever level you are, now a 

design can be level can be represented at 3 different levels of abstraction. Well you can view a 

design from the point of view of its behavior, from the point of view of its structure and from the 

point of view of its physical implementation. There are 3 different views you have in order to 

look at a design. Now there is a standard way of looking at these 3 different angles of a particular 

design. This is represented by something called a Y diagram. I am showing this structure for Y 

diagram. I will be coming this into detail later when you talk about synthesis. So a Y diagram 

looks something like this.  

 

(Refer Slide Time: 20:14) 

 

 

 

As you can see it looks like a Y with the 3 directions representing behavior structural and the 

physical domains. Now the idea is that when you are talking about the behavioral domain there 

we are talking about the behavioral specification of the design. Now here I am not talking about 

the details later while here we typically specify the behavior in the form of a in the form of 

description language like Verilog HDL. Well if you if you are talking about logic gate level 

design there are also you can specify behavior. That can be in the form of a truth table. That can 
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be in the form of a Boolean expression. That does not talk about the actual implementation; just 

the behavior.  

 

So in the behavioral domain we talk about how this circuit should function. Its input output 

behavior in some way. Now when we talk about this structural domain this means we have 

already undergone a step of synthesis. Now we have some kind of a netlist with us. Well if it is a 

behavioral level then we talk about interconnection of big subsistence big blocks and how they 

are interconnected. Now if we are at the register transfer level then we talk about ALUs registers 

adders their interconnection. Now if you are the logic level we talk about gates flip flops and 

their interconnection and if at the physical level you talk about transistors and their 

interconnection okay.  

 

Now (Student Noise Time: 22:00). Yes sure. See behavioral level means I am trying to specify 

the behavior of the design. Now this behavior can be specified in a number of different levels. 

Well in a high level I can talk about the system. Well I can I can express my behavior in an 

algorithmic fashion. Something like, you are writing a program in a high level language similar 

to that. Well the step down I can specify the behavior in the form of say some basic building 

blocks. Then each of the basic building blocks I am specifying in terms of its behavior like an 

ALU I am specifying in terms of its behavior.  

 

A register I am representing in terms of behavior. I am not going into the detail of it okay and 

their interconnection. Now at the next lower level I can think of the behavior of a logical level 

implementation. There I can represent the design in the form of a truth table or in the form of say 

it is Boolean expression okay. Now this is behavior. Now when you are into the structural 

domain say at least we have a part of this synthesis which is done. Now we can look at a netlist. 

Well at the logical level you can see some gates and their interconnections. Well at the RTL level 

you can see the blocks and their interconnections. Well at the transistor level you can see 

transistors and their interconnections. That is the structural domain.  

 

Now at the physical domain this is the angle which you look from the point of view of the 

physical implementation. Like if you consider that this is my silicon floor. This is the floor of the 
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silicon what I want to finally map my design into. So when I am into the high level design step 

behavior systems of systems there what you can do at the level of the chip you can do some floor 

planning at sub system I will be placing here, sub system I will be placing here, sub system I will 

be placing here. But these sub systems are still black boxes to me. Now once we are into level 

down the specification then each of these sub systems can be broken up into smaller sub systems 

okay.  

 

Now this process will continue till we go down to the level of the transistors and their layouts. So 

we will get the final layout at that level. So at the physical domain we are looking at the actual 

floor of the silicon and how we are placing the blocks which are which are at the level of 

abstraction we are looking at on to the floor of the silicon. That can be at high level. That can be 

at a very low level right. So this Y diagram is just a way of looking at it. There is nothing special 

is there. Okay. So now let us look at some explanation regarding these 3 domains with some 

examples. Well I have illustrated the differences. Let us now take some examples. Well, let us 

start with the behavior.  

 

Now as I said that in the behavioral representation we are not specifying the any details of the 

implementation. We are just specifying the input output behavior of the system. That may be in 

the form of an algorithm. That may be in the form of a truth table. We found some Boolean 

expression. So it specifies how to design should respond to a given sets of inputs. If I give some 

input what is the expected output. That is the behavior right. Now as I mentioned behavior can 

be specified in a number of different levels by means of Boolean expressions. By means of some 

kind of truth tables. It can be specified algorithmically in some high level language or in some 

hardware description language. Well you can specify behavior in a number of different ways. 

Now let us take some concrete examples of representing this behavior. Well here we take a 

simple example just to illustrate.  
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Now here we want to construct an n bit adder by cascading n number of full adders; n-bit adder 

means full adder. Now as you know that a full adder will be having 3 inputs and 2 outputs. The 3 

inputs are the 2 numbers A and B 2 bit C Add and a carry input; and the outputs will be some 

and a carry out. So as you know that the logic expressions for the sum and carry are these. Right. 

Well I am illustrating the generation of the carry logic only. You can also do the same for the 

sum logic. The example that I am giving there I am specifying how I can generate the carry logic 

for a bit adder. Single bit adder. This can be extended by using a number of such instantiations  

to create a n bit adder but just by illustrating I am showing you for the time being that how to 

generate this carry out for a bit adder for a full adder and I am using the language Verilog for 

illustration. I will be talking about the syntax of Verilog later.  
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For the time being I am showing you how to specify. This is an algorithmic level description of 

carry where as you can see here I have specified the Boolean expression. This ampersand means 

and this bar means or so ab or bc or ca. This is how we specify this in Verilog. This is a module. 

In Verilog everything is in terms of a module. This is a name of the module. These are the 

parameters just like you specify a function. These are the input parameters. These are the inputs 

to the block. This is the output, this is a keyword assign. This is assigned to cy okay. So this is 

this is way of specifying the carry in terms of its behavior okay. There is an alternative way of 

specifying it also in a in the form of a behavior namely in the form of a truth table that you can 

do like this.  
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So here well when we specify it in in the form of a truth table instead of module we declare it as 

a primitive right. Begin primitive end primitive some kind, Well, the rest are similar here. These 

are the parameters. These are the inputs. These are the outputs and the input output behavior we 

specify it by using a keyword table and end table. Now this table we will remember that how 

many inputs I had and how many outputs I had. There were 4 double slash means comment. This 

is a comment line. This line is nothing but a comment line. Just look at the other lines. First you 

specify the inputs, then a colon, then the output followed by a semicolon.  

 

So this can be an incompletely specified truth table with you can see are these are question marks 

which means do not care. This says if a and b are c is a do not care. Then the carry out will be 

sorry this will cy. Carry out will be one.  Similarly if a and c are b do not care then it will be one. 

If 2 of them are zero then the output is zero. So you can see we have specified all possibilities 

but we did not specify all eight column all eight rows of the table okay. Because the all zero case 

will get covered. By these, the all case will get covered by the first 3 right. Fine.  

 

Yes. (Student Noise Time: 30:28) Primitive is used for something which is like a constant for 

you to specify exactly the input output behavior in terms of the numbers or the values. Now in 
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the early example you have specified in the form of Boolean expression where you need to 

evaluate the expression in order to find out the value. But in the case of primitive it is something 

like constant values you specify, that if this is input this is the output okay. Fine. So these are 

some examples of representing a design by its behavior. Now let us talk about structure.  
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Now in the structural representation here we have some components. Now the kind of the 

components we have that depends at which level of design we are in. Now if you are at the logic 

level or components or gates or flip flops. If you are at the register transfer level or components 

or ALUs adders multiplexers etcetera. So here you specify components and how they are 

interconnected. This interconnection is sometimes called a netlist. Netlist is nothing but a graph. 

You specify some nodes and their interconnection. Now these nodes will be the components. 

This will be gates. Okay. So now as I mentioned the netlist can be specified at various levels 

depending on at which level you are considering the components. Components can be as low as 

the transistors or the gates or it can be as high as say an ALU or even a subsystem. Okay.  
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So, just as I mentioned this structural representation you can you can represent it at the level of 

modules at a very high level. Modules can be very high level. It can be RTL level modules also. 

You can represent it at the gate level. Switch level means a transfer level. This switch and 

transistors are used synonymously. So when you are talking about switch level design you are 

actually talking about a netlist of transistors. But when you have translated this transistor level 

design into actual physical layout then you are at the circuit level. It is very clear as you go from 

the module level down to the circuit level more and more design details are getting revealed. 

Okay. Okay. Now we will illustrate a very simple example.  
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Say we want to design we want to design a 4 bit adder. The root of this tree represents that 

specifies at 4 represents a 4 bit adder. Now to keep things simple we are designing it as a ripple 

carry using 4 such we will be using 4 full adders and interconnect them. Okay. By rippling the 

carry, so the 4 bit adder can be broken down into 4 full adders and their interconnection. So here 

we are talking about structure level. So at the first level of abstraction you can break it down into 

4 full adders and their interconnection. Well if we if we want to go down further then each of 

these full adders can be broken down further into a carry sub circuit and a sum sub circuit.  

 

Now each of these carry and sum sub circuit can be further broken down into an equivalent logic 

level. Just as for example the carry sub circuit looks like this ab or bc or ca right. Similarly you 

can design a sub circuit for some. So this is your structural level design. So as you go down the 

size of your the building blocks at this level it were full adders at this level it were the carry and 

sum blocks. At lower level it was the gates. So you have smaller and smaller building blocks and 

the netlist is becoming bigger and bigger in terms of the number of components okay. So this 

kind of a design specification you can represent very easily in a hardware description language. I 

am giving an example with Verilog. Okay. This is a design description using Verilog.  
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If you look at it you will understand what you mean? This is a module which is a 4 bit adder. We 

are giving it a name add4. These are the parameters. This is the carry in. These are the 2 inputs 

we want to add. Now since this is a 4 bit adder the inputs will have to be 4 bit getters. So as you 

can see this x and y are defined as input within bracket 3 colon zero. It means it is a 4 bit vector 

with the indices starting from zero going up to three x 0, x, x 2, x 3 and y 0, y, y 2, y 3. Similarly 

carry in is a single bit. The sum will again be a 4 bit quantity and cy 4 is the carry out. Okay. 

These wires, these are some intend say. This is a block you are considering.  

 

You have a vector y. You have x and a vector y. You have carry in and at the output we have a 

vector s and we have a carry out cy 4. Now inside well see just look at these 4 lines. Here what 

we are doing? We are we are creating 4 instantiations of this low level add module. Add is a full 

adder. So what we are saying that in this block we are instantiating this add 4 times right. These 

are the names we are giving b 0, b, b 2, b 3 and just before coming back to this let me show you 

another slide first. This adder this adder must be predefined as a module.  
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As another module, this is a full adder module which I have already defined where the first 

parameter represent the carry out then sum then the 2 inputs and the carry in. Right. And 

similarly the carry see here this adder if we just look into the detail here I have not specified the 

Boolean expression. I could have but I have decided to use a separate module for carry and a 

separate module for sum and use it here. These are examples of instantiations. Instantiate just 

like we are calling a function from another function we are just including a module inside this 

module. So we are including the sum. We are including the carry and we are using the 

parameters in a proper way so that these parameters we can get proper correspondence.  

 

Well here I am showing the quote for carry. For sum I am not showing, sum will be very similar. 

Carry here at the lowest level you have a choice of specifying the circuit in terms of gates or you 

have a choice of specifying in terms of behavior in terms of Boolean expression. Well here this 

and or are primitive gates which are already available in the library. These we need not explain 

any further. These are already there. So if you look at this and t a b. This means g is an AND 

gate. It inputs a and b and output is t. Similarly g 2 is another and gate. Inputs are a, and c, output 

is t 2, g 3 is another, b and c are the inputs, output is t 3 and g 4 is an OR gate. This is a 3 input 

OR gate. It takes t, t 2, t 3 as the inputs and at the output it generates carry out.  
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Now as you can see this t, t 2, t 3 were not any input or output parameter. They are intermediate 

lines. These are defined as wires right so wires are essentially the signal lines which are used for 

interconnecting module with another internally. So this is how you can define a carry a full 

adder. And using this and their interconnections you can at a higher level you can define 4 full 

adder modules and then interconnections. See interconnections are defined in the way you 

specify these parameters. Just you see b 0 has this cy out 0 as the carry out, b has this cy out 0 as 

its carry in. So the carry is getting changed. Similarly this cy out is getting as the carry in here. 

The carry out of this is getting as carry in.  

 

So this 4 full adder modules we are doing a repeat change by specifying parameters in a proper 

right. (Student Noise Time: 40:52). This is at the RTL level. Yes. So may be at the top level of 

the design you do this. But as you go down the design you will breaking up this adds into this. At 

the next level you will be splitting this sum and carry into this. So this step goes on but the 

beauty of this language verilog is that you can capture information in the same language. So the 

same language you can specify things at a number of different levels. There is a version of 

verilog using which you can also specify the physical layer. I will just show an example. Fine.  

 

(Refer Slide Time: 41:38) 
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So the third step that I was talking about was the physical representation in the Y diagram. So we 

talked about behavior. We talked about structure. We talked about physical. Well here just 

before I proceed further, let me tell you thing that if your objective is to design a chip. Then it is 

always instructive and it is always better to design or to specify in the structure level as far as 

possible because you may be tempted to specify in the form of the behavior because all of you 

are so very familiar with writing a program in a high level language. So if I give you a complex 

design to implement then you may be tempted to write it like you write a program in c.  

 

But the problem is that the synthesizer while synthesizing can face a lot of problems. But if you 

have some kind of a block diagram hardware block diagram in the back of your mind you can 

specify it at the structural level to the extent possible. Then you can get an implementation which 

will be efficient.  Well if you specify the behavioral level most likely you will be getting a very 

inefficient implementation right. Fine. So in the physical domain we talk about physical 

representation and there I had mentioned with the help of an example earlier that when you are at 

the module level when you are at the RTL level then at the level of the silicon floor we can 

represent each of the 4 full adders as rectangular regions or polygons. These are the 4 full adders.  

 

As you go down, as you go to the carry and sum then each full adder will be divided up into a 

carry and sum, carry and sum, carry and sum, carry and sum. Then at the logical level each of 

this will be divided into gates okay. So these steps are going on and in the physical 

representation at all levels you are thinking that exactly where on the floor of the silicon I am 

going to map that. And finally when you are at the layout level at the lowest level then you have 

the actual layers metal poly silicon diffusion etcetera. Now the ways in which the lowest level 

layout is represented is also not very difficult. They are represented as some geometrical shapes. 

They are all rectangles or a collection of rectangles. A line can be defined as a rectangle whose 

width is less but length is long. Who specify the exactly code names just like you specify a 

drawing. So I am giving you an example.  
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(Refer Slide Time: 44:33) 

 

 

 

This is of course a hypothetical example. This is not the exactly I am only showing you a small 

part of it that how a physical representation can be moduled in Verilog. That means here also you 

have the module. Well just forgot to add the input and output parameter. They will be as usual 

okay. The input and output. Boundary specifies the coordinates of the bounding box inside which 

you want to place the layout 0 0 to 30. These are the xy coordinates and these are the ports 

through which exactly where on this bounding box are the input output points located. These are 

called the input and output ports. So you specify the exact coordinate of this and you also specify 

on which layer the ports are available. For example this is available on metal aluminum width of. 

This is available on poly silicon width of 2 and there can be some other sub modules you may be 

adding.  

 

A zero, for a zero can be anything. Sorry sorry not a zero add. This adds are full adders. You can 

add full adder at origin 0 0. So you add here. If this represents 0 0, then you can add full adder 

here and another full adder you can add at a coordinate 0 20. It can be somewhere here. This can 

be 0 20. So at this level you specify the exact coordinates and you specify at exactly at which 

coordinate you have the blocks. Now these blocks can be high blocks. It can be in the form of 
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rectangles of aluminum poly silicon diffusion also. Okay. So here we will not be going into the 

detail at this level okay. Just for your information I have mentioned this.  

 

(Refer Slide Time: 46:37) 

 

 

 

You should summarize digital IC design flow. These were the steps some of the steps I have 

mentioned. This is a slightly refined diagram. Just I will finish this lecture with this slide. See to 

begin with you do design entry where you specify your design in terms of its behavior. Then you 

go through a process of synthesis. This is sometimes called logic synthesis because the RTL 

level synthesis and logic synthesis are they are typically combined together. So there what you 

get as the net output is a netlist of gates. Okay. So after you get it you typically do some kind of a 

circuit partitioning because your overall netlist may be too big.  

 

Well out here you do some kind of a graph partitioning to identify the tightly coupled modules 

and the number of interconnection between 2 modules or less so that it will be easier for you to 

place these modules on the floor of the chip. Typically either after partitioning or before 

partitioning, you do something called pre layout simulation to verify whether your behavior or 

the process of synthesis was correct or is there anything wrong. Now you will see that if you 

specify a design in verilog there are some features which are perfectly okay when you specify it 
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for during synthesis it will be better it cannot be synthesized. These are the things we would be 

discussing later. So you carry out a pre layout simulation and if you get any errors or 

inconsistency.  

 

You can modify either your original design specification or you can make some change in logic. 

Logic synthesis also in order to rectify the defect. After you are done with this you are now 

going to the actual layout implementation on the floor of the silicon. There you actually go 

through processes like floor planning placement and routing. So at the end of which you get the 

actual layout in terms of the rectangles that I have just mentioned, silicon poly silicon diffusion 

metal etcetera. But as you know the process of fabrication is expensive. Well if you give a chip 

for fabrication it will cost you. It may cost you several lakhs of rupees. So before going there you 

must be sure that your layout is also correct.  

 

So normally you go through a process called circuit extraction. Circuit extraction means from the 

layout from those geometries you would try to re extract the transistor level circuit. Like for 

example if a polysilicon and a diffusion rectangle intersect it means there is a transistor at the 

junction. That way it is very easy to extract the transistor level layout from there and means you 

can also estimate a very accurate figures of the interconnect resistances and capacitances because 

you know the exact geometries. Now say there for a poly silicon line you know the resistance for 

unit length. You know that exactly for how long the line is running. You can estimate the total 

resistance.  

 

So after circuit extraction you can do a post layout simulation but the problem here is that here 

you have a circuit which consist of transistors resistances and capacitances. So here you will 

have to do something called a circuit simulation using software like spice or something. This is 

time consuming. This can only handle small circuits. So you will have to use this very 

judiciously. Yes. (Student Noise Time: 50:39) Floor planning means you floor planning is a 

tentative plan that exactly where you want to place the blocks. Placement means as you go 

through the step of synthesis. Say what exactly mean to say something like this.  
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(Refer Slide Time: 51:00) 

 

 

 

Suppose this was the floor of the chip. So at the level of floor planning you have defined that this 

is a place where you will be placing a module m. This is a place where you will be placing 

module m 2. This is just a plan, just like a building plan you have done but as you go through the 

process of synthesis further you will be going down to gates to transistors to layout. There you 

will be getting the exact shape of the module. So the after the placement is over possibly your 

modules will look like this. This will be now your m. This will be your m 2 and these will be the 

interconnecting ports. So you will be now interconnecting them like this.  

 

So floor planning is a tentative relative ordering or positioning. And placement, well you can do 

placement once you know the exact geometries and the exact points which need to be 

interconnected. Okay. (Student Noise Time: 52:22) Sir routing will be after placement or routing 

will be done after placement. (Student Noise Time: 50:30) Routing of course will give you all 

the details of which layers are connected. Yes. But typically when you are connecting modules at 

a higher layer you just try to keep most of the interconnections at the metal layers. But for some 

connections are shorter distances you may also use other layers. (Student Noise Time: 52:59) 

How can we do post layout simulation? Post layout simulation. See you may not be doing it 

frequently.  
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But it is a very good practice because I am giving a very good example. You have done a design. 

You do a simulation at the high level without going through post layout and you may see that 

your circuit is working at gigahertz. You are very happy but you but you get your chip fabricated 

it comes back you see that your circuit is working at 15 megahertz only. That is the fact of life. 

You have ignored capacitances and inductances the noise cross talk everything you ignored but 

once you do a post layout simulation. You can find out the problem areas of the circuit where the 

delays are occurring. You can possibly redesign that part so that bottle necks are removed is 

placement only we are deciding which interconnection we do. (Student Noise Time: 

53:49)Placement we are deciding the geometries of the blocks. The interconnections are done in 

the routing phase.  


