
Computer Networks
Prof. S. Ghosh

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture -31
TCP

Good day, our topic today is TCP. TCP is the second most important transport protocol.
TCP is very widely used by many applications. We have already discussed UDP.
Actually this is a little more complex then UDP but it also has some advantages. We will
see what they are. The Transport layer responsibilities are:

(Refer Slide Time 01:13 - 01:44)

Transport layer creates packets from byte steam received from the application layer. And
in order to multiplex and de-multiplex amongst various applications it uses port numbers
to create process-to-process communication. It uses a sliding window protocol to achieve
flow control and uses acknowledgement packets, time out and retransmission to achieve
error control. So, unlike UDP which is unreliable this seeks to provide a reliable
communication. That means it is error free, it is a connection oriented protocol and it also
has some kind of congestion control mechanism. And it does the basic thing of
connecting between processors amongst two distant nodes possible.

(Refer Slide Time: 02:54-03:02)

TCP is called connection-oriented reliable transport protocol. It adds connection oriented
and reliability features to the services of IP. IP as such is best effort kind of service so it
does not give you any reliability. Secondly IP is connectionless whereas TCP tries to give
some kind of connection-oriented flavor to the connection. And proposal is implemented
entirely at the two end nodes. That means the intermediate routers etc do no have any role
to play.

(Refer Slide Time: 03:35-04:07)

The communication abstraction is that, it is reliable and ordered. Ordered means the
packets are received in order. In IP it is not guaranteed that the packets will arrive in

order because what might happen is that one packet may be routed in one direction and
the other packet may be routed in other direction so the packet which was sent first may
land up at the destination earlier and vice versa. But TCP makes them ordered. TCP
brings an order amongst them.

(Refer Slide Time: 04:08 – 04:22)

TCP is point-to-point and unicast. All these features namely it is ordered, point-to-point,
reliable and unicast is what gives the connection-oriented flavor to TCP. It takes the byte-
stream as an input and gives that as the output. It is a full loop-less connection. That
means both the nodes A and B are connected by TCP then A can communicate to B and
B can communicate to A and it has flow and congestion control.

(Refer Slide Time: 04:22-04:32)

TCP (Transmission Control Protocol) is a connection-oriented protocol, reliable, unicast,
end-to-end, byte-stream over an unreliable network.

(Refer Slide Time: 04:58-05:41)

So, before any data transfer TCP establishes a connection. Just like in a connection-
oriented network like classical telephones, first there is a connection which is set up by
all kinds of control signals. Similarly, like in ATM, first a connection is set up and then
the actual data transmission begins. Similarly, in TCP a connection is set up between the
two end points before any transmission takes place, so it sets up a connection.

(Refer Slide Time: 05:42 – 06:09)

One TCP entity is waiting for a connection that is the server. The other TCP entity-client
contacts the server. The actual procedure for setting up connection is more complex. The
client first makes a request for a connection and then the server acknowledges the request
and accepts it, then the data transfer begins. So there is a connection set up before actual
data transfer can take place and at the end of the data transfer there is a disconnect phase
also.

(Refer Slide Time: 07:08 – 07:34)

It is reliable. The byte-stream is broken up into chunks which are called segments.
Therefore at the TCP level they are called segments. The receiver sends

acknowledgements for segments so this is the basic mechanism by which reliability is
brought in that each and every segment is acknowledged. TCP maintains a timer. If an
ACK is not received in time the segment is retransmitted. So this is the basic mechanism
for reliability. The sender sends a packet and it waits for some acknowledgement. And if
the acknowledgment does not come through from receiver then the sender assumes that
the packet has been lost and sends the packet again hoping that this packet will eventually
reach the receiver and the receiver will send the acknowledgement. This might also lead
to duplicate packets at the destination. For example, the sender has sent the packet and
the receiver has received it and it has sent an acknowledgement but then the
acknowledgement got lost. So naturally the original sender did not receive any
acknowledgement and after sometime it will send it again so a duplicate segment would
be a received by the receiver but then it knows that it is a duplicate and will eliminate
that. So, by this way it achieves reliability.

(Refer Slide Time: 07:34 – 07:59)

TCP can detect errors. TCP has checksum for header and data like UDP. Segment with
invalid checksums are discarded. Each byte that is transmitted also has a sequence
number. So, if some intermediate sequence number is missing the receiver knows that
something has been lost.

(Refer Slide Time: 07:59 – 08:32)

To the lower layers TCP handles data in blocks, the segments. This is where the packets
actually originate. But to the higher layer TCP handles data as a sequence of bytes and
does not identify boundaries between bytes. So, the higher layers do not know about the
beginning and end of segments. Hence to the higher layer it is just a stream of bytes.

(Refer Slide Time: 08:33 – 09:02)

For example, the application writes 100 bytes then it writes 20 bytes so all these go into
the queue. So the queues are bytes to be transmitted and then TCP transmits them. At the
other end also there is a queue of bytes and at the other end also it reads 40 bytes at each

go. So, to this application this is the byte-stream and for this application also this is just a
stream of bytes coming in such units.

(Refer Slide Time: 09:03 – 09:37)

The unit of data transfer between devices using TCP is a segment. It is 20 to 60 bytes
header followed by data. It is a 20 byte header if there are no options and up to 60 bytes if
it contains some options. So there can be up to 40 bytes of option. So the header naturally
contains some field which allows the TCP protocol to run. Now let us look into the
details of this header.

(Refer Slide Time: 09:37 – 09:02)

The Header has 16-bit source port address and 16-bit destination port address. It also has
a sequence number, acknowledgement number, Header length (HLEN), reserved bits,
some flags and then there are some options like window size, checksum, urgent pointer,
options and padding.

(Refer Slide Time: 10:21- 10:30)

So there is a source port address. In the client-server processes actually communicate
through ports. And the port and the IP address together form the socket which uniquely
identifies every session. When a TCP session is going on, on both the sides two port
numbers are assigned. For standard applications the first communication will start on
well-known port number then they will switch to ephemeral port numbers.

(Refer Slide Time: 10:31 – 10:51)

Then there is a source port address which is a 16-bit address that defines the port number
of the application program on the host that is sending the segment.

(Refer Slide Time: 10:51 – 11:15)

Similarly there is destination port address which is again 16-bits. The port number is
from 1000 to 65000 and those are the ephemeral port numbers. Destination port address
defines the port number of the application program on the host that is receiving the
segment.

(Refer Slide Time: 12:50 -12:55)

There is the sequence number which is a 32 bit number. It defines the number assigned to
the first byte of data contained in the segment. During connection establishment a random
number generator is used to create an Initial Sequence Number (ISN). The field for the
sequence number has been kept quite big, it is a 32 bit and is kept with a reason. If the
number of bits for the sequence number was small then what could happen is that, when a
particular session starts it sends the number and then it would go back to the beginning.
For any finite length sequence number after some point it is going to go back. Now, if it
goes back and starts these numbers once again for a very small segment size what might
happen is that first of all the two packets may get the same segment number which are on
the network at the same time and similarly other kinds of confusion might arise. So what
is done is that, actually a large sequence number is generated so that even if it comes
back to a low number we can know that which one came earlier and which one came
later. If after receiving very high numbers if you start getting some low sequence
numbers you know that it has looped back. Actually it may not be a strict loop.

(Refer Slide Time: 13:27 -14:28)

Therefore this is the range of sequence numbers. So 232 is about 4 {…lian} which is a
large number and random number is used to generate the Initial sequence number. This
initial sequence is expected in a large range so it is not going to clash and this ISN is
exchanged between the two nodes.

(Refer Slide Time: 14:29 – 14:44)

There is an acknowledgment number which is 32 bit. Just as the segments which have
been sent they have a sequence number. Similarly, these segments as they arrive on the
other side will get an acknowledgement. So it is one acknowledgment after the other so a

stream of acknowledgements will come. Actually in the best of circumstances there will
be as many acknowledged numbers as there are segments which are sent. So this
acknowledged number will start somewhere and that would be communicated by the
receiver to the sender in the connection set up phase which is also a 32 bit number that is
large. It defines the byte that the receiver of the segment is expecting to receive form the
other party. This is standard norm for the sliding window protocol.

(Refer Slide Time: 14:53-14:57)

The next field in the header is the header length which is of 4 bit. This indicated the
number of 4 byte word in the TCP header. This is required because the header is of
variable length. The header could be anything from 20 bytes to 60 bytes depending on the
options. So the Header length is to be specified and then there are some reserved bits for
future use followed by some flags. It defines 6 controls flags.

(Refer Slide Time: 14:58 -15:51)

(Refer Slide Time: 15:51 – 16:17)

URG defines the urgent pointer which determines whether the urgent pointer is valid or
not. If the urgent pointer is not valid the urgent pointer field itself may contain some
garbage. ACK tells whether acknowledgement is valid or not. PSH is for request for
push. RST is for resetting the connection. SYN is to synchronize sequence number and
FIN is to terminate these connections. These flags are used for setting up and termination
of connections.

(Refer Slide Time: 16:17 -16:35)

There is a window size of 16-bit which defines the size of the window in bytes that the
other party must maintain. It is sort of controlled by a receiver. The receiver gives the
window size which is of the sliding window protocol. And then there is a Checksum
which is of 16-bits. The checksum is like UBP.

(Refer Slide Time: 16:36 – 16:58)

The urgent pointer is 16-bits and is valid only if the urgent flag is set. It defines the
number to be added to the sequence number to determine the last urgent byte in the data
section of the segment.

(Refer Slide Time: 16:55- 17:02)

Options are up to 40 bytes. Options could be a single-byte or multiple-byte. Multiple-byte
in options may contain maximum segment size, windows scale factor and timestamp etc.
In single-byte there are end of options and no operation for padding purpose.

(Refer Slide Time: 17:03 -17:24)

End of option is used for padding at the end of the option field and no operation is used
as filler between the options.

(Refer Slide Time: 17:24- 17:51)

If there are options on the other hand then one option is the maximum segment size
which defines the size of the biggest chunk of data that can be received by the destination
of the TCP segment. This is not the segment but the size of the data which is taking the
header field out.

(Refer Slide Time: 18:53 -19:00)

The window scale factor defines the size of the slicing window and how it is changed.
Timestamp is filled by source when segment leaves and destination returns it in the echo
reply field. This allows the source to determine the round trip time. Some estimation
about the round trip time is very essential because suppose a particular segment has been

sent then the sender is expecting an acknowledgement. If the acknowledgement does not
arrive on time, then how long would the sender wait for the acknowledgement? So you
have to make an estimate and that estimate is based on the round trip delay, the maximum
segment life. So it has to wait that much or may be some more and only then the sender
would sort of come to the conclusion that may be the original packet is lost or may be the
acknowledgement is lost. But in either case the packet or the segment that was send it has
to be retransmitted.

(Refer Slide Time: 19:01 – 19:24)

There is a Checksum, it has the same calculation as UDP and inclusion is mandatory with
TCP.

(Refer Slide Time: 20:21 – 21:10)

Setting up connections and resetting of connections: TCP is a connection-oriented
protocol. So, a virtual path between the source and the destination has to be established.
This is only a virtual path because remember that TCP is working on IP that means an IP
is a connectionless service. So the underlying actual service is actually connectionless.
But TCP gives a feeling to the upper layer, this application layer that, as if it is a
connection-oriented thing. That means all good things about connection orientation like
segments, arriving in order and reliability etc is present. But TCP has to work on a
connectionless IP network. So this path established from source to the destination is only
a virtual path unlike traditional strict connection-oriented service where the connection
may be physical.

(Refer Slide Time: 21:10 -21:21)

For connection establishment four actions are required before sending data. And here two
of them may be combined so it can even be three actions. First host A sends a segment, if
host A is the client and it wants to establish a connection to the server may be a host B, so
host A sends a segment to announce its wish for connection and includes its initialization
information. And then host B sends a segment to acknowledge the request of A. Here
host B sends back an acknowledgement.

(Refer Slide Time: 21:21-21:24)

Then host B sends a segment that includes the initialization information. So here the
second and third steps can be combined.

(Refer Slide Time: 21:24 - 21:47)

That means the host B can acknowledge the request of host A as well as in the same
acknowledgement it might send the initialization information meaning the sequence
number etc have to be exchanged.

(Refer Slide Time: 21:47- 24:09)

Then host A sends a segment to acknowledge the request from B. Second and third can
be combined which is called as the Three-Way Handshaking.

 (Refer Slide Time: 24:09-24:30)

For the first SYN, that is, for synchronization the sender sends a synchronization which is
a request to set up a connection to the host. And it also gives initial sequence number.
The receiver then sends a SYN, its own SYN the sequence number which is something
like 4800 and an acknowledgement of 1200. This segment which is the segment 1 already
consumes the first sequence number 1200. So, while acknowledging it sends the value
1201 meaning that 1201 is the next segment or next segment number that the receiver is
expecting. What might happen is that, this packet may get lost because once again the
TCP is sitting on a best effort kind of IP service so it may get lost.

Therefore, what would happen to the sender is that, the sender will not get any
acknowledgement so after some time it will send the SYN pack again if it is persistent
and then finally it will get the SYN and the acknowledgement. Similarly, if this is lost
once again this is sent after sometime and finally this is achieved and then the sender
sends the sequence number 1201 and acknowledgement 4801. So this sequence number
is always the next number that is expected from the other side. When it sends sequence
number1200 it replies back saying that next it is expecting 1201 and its starting number is
4800. So he replies in his acknowledgement that the next acknowledgment he is
expecting is 4801. So this is the Three-Way Handshake where the SYN and the ACK has
been combined and then the data transmission can start.

(Refer Slide Time: 24:53-24:58)

On the other side we have to think about the connection termination. To terminate the
connection either party can close the connection. If connection is terminated in one
direction data can continue to be sent in the other direction. Remember that this is the full
loop-less communication which means A is communicating to B and B is communicating
to A at the same time. Even if only one side is sending data to the other side the
acknowledgement is coming from the other side anyway. Now, the connection can be
terminated from the both sides but then somebody has to initialize the termination.

(Refer Slide Time: 24:58 –25:22)

So, if connection is terminated in one direction data can be continued to be sent in the
other direction.

(Refer Slide Time: 25:27 – 25:34)

Four actions are required to close the connection in both directions. First, host A sends a
segment announcing connection termination. This means it sends the segments
containing FIN.

(Refer Slide Time: 25:34-25:44)

Host B sends a segment acknowledging the request from A and after this the connection
is closed in one direction.

(Refer Slide Time: 25:44-25:50)

When host B has finished sending data it sends a segment indicating connection closure.

(Refer Slide Time: 25:51-25:55)

Here, the second step and the third step cannot be combined together.

(Refer Slide Time: 25.55 – 26:10)

(Refer Slide Time: 26:11-26:24)

Although we are sort of allowing the termination of connection for one side but on the
other side it may have acknowledgements or other things to send to this side so it will not
terminate the connection. Therefore these two cannot be combined together.

(Refer Slide Time: 26:24- 29:32)

The third step can be taken only when host B has finished sending data from its side and
it sends a segment indicating a connection closure. Host A acknowledges the request
from B. So this is called a Four-Way Handshaking.

(Refer Slide Time: 29:32-29:36)

This is the diagram showing Four-Way Handshaking. For example, assume that the
sender has sent a FIN in a segment 2500 and when it receives the FIN if everything is all
right he will send back an ACK and he say he will say that the next one he is expecting
from the other side is sequence 2501 and sequence 7000 which is the acknowledgement
for this FIN. After sometime when B has finished sending all its acknowledgements and

other things it might want to send to the sender then it is sends a FIN from this side. So,
this is for closing the connection from the other side. The acknowledgement that is
expected once again is 2501 and this is still 2501 because nothing else has arrived from
the other side and then it takes the next segment number 7001 from this side. And he
acknowledges this second FIN when the acknowledgement reaches here so everything is
closed gracefully.

Of course things may not run so well because one or more of these packets may get lost
on the way because we know that the underlying network is unreliable. If the first FIN is
missed he does not get any acknowledgement and after sometime he will send the FIN
again. Similarly, if this ACK is not received then he will send this FIN once again
anyway. So this FIN may be lost. Since he does not get any acknowledgement he will
send the FIN after sometime. The trouble is over here because at this point of time after
sending this acknowledgement the sender will assume that everything is fine so he will
close. But this last acknowledgement may get lost. As all the FINs have been sent and
received and the acknowledgement has been received and sent he will say that it is the
end of the story but for him it is not end of the story because this ACK is now lost but if
this fellow has already completed he will not send any ACK any longer. So what he will
have to do is that after sometime he will have to close the connection.

(Refer Slide Time: 29:36-29:42)

Actually the TCP goes through a state diagram.

(Refer Slide Time: 29:42-31:11)

This is the state diagram and these are the different states.

(Refer Slide Time: 31:11-32:21)

One is of course closed that means no connection is active or pending. The other is
listening. May be the server is waiting for an incoming call. SYN RCVD means
somebody has made a request, a connection request has arrived and is waiting for
acknowledgement. SYN SENT: The client has started to open a connection.
ESTABLISHED means a connection has been established and that is the normal data
transfer state. FIN WAIT 1 means client said it is finished. FIN WAIT 2 means server has
agreed to release. TIMED WAIT means wait for pending packets. This is the 2 MSL wait

state so for the last pending packet to come in you have to wait this much. This is the
maximum segment and this is sort of estimated from the round trip time. CLOSING
means both sides have tried to close simultaneously. CLOSE WAIT means server has
initiated a release and a LAST ACK is waiting for the pending packets.

(Refer Slide Time: 32:21-33:05)

When it is closed nothing is happening. Now some SYN or SYN plus ACK it receives
and once it receives that then it goes to the SYN RCVD state. As explained earlier this is
the connection set up phase and once the connection is set up then it reaches the
Established phase and then the two way communication is going on. Then, after this, it
goes through a closure either through the closing and then FIN WAIT 1 and FIN WAIT
2, TIME WAIT etc and here it is the close width and the last ACK.

(Refer Slide Time: 33:05-33:17)

The flow control is implemented by TCP. This defines the amount of data a source can
send before receiving an acknowledgment from the destination. TCP uses a window
imposed on the buffer of data to limit the amount of data sent before an
acknowledgement must be received. This is the traditional sliding window protocol.

(Refer Slide Time: 33:18 -34:21)

In the Sliding Window Protocol a sliding window is used to make transmission more
efficient as well as to control the flow of data so that the destination does not become
overwhelmed with data.

(Refer Slide Time: 34:23-35:01)

In sender buffer there is the occupied part of the buffer and out of this some number or
packets or segments have been sent but they have not been acknowledged and these are
the next byte to be sent which is available in the buffer. Now, depending on the windows
size it can go on sending these bytes. Or if the window size is already over then it has to
wait here. Let us assume that the size of the window is three units, in that case the sender
has to wait here till some acknowledgment comes. And if the acknowledgment comes
suppose 200 is acknowledged then the window will automatically slide and this now can
be sent.

(Refer Slide Time: 35:02-35:22)

At the receiver side it has received 194 to 199. This is the occupied part of the buffer and
from this buffer the destination process will keep on consuming the data from these
segments as q stream of bytes going out of this segment. Here, this is the empty part of
the buffer where new segments can come in.

(Refer Slide Time: 37:48-39:55)

Suppose the size of the receiver window is 7 then after having sent this the sender can go
on sending up to the receiver window size. The point is that, if a window size is not fixed
what the sender might do is that, the sender may send in a lot of packets. Or may be the
channel is absolutely bad, in that case none of the packets have gone to the other side so
you will have to send all these packets once again, and that is one point. And secondly
the sender may be very fast but the network may be congested. So the sender will push in
a lot of data but that will only make the congestion worse. So whatever would have been
received on the other side does not reach that side because the intervening network has
been congested, or may be some buffer has overflowed or some router has dropped some
packets etc so there is a limit on the window size.

The window size also has a bearing on the speed at which effective data transfer is taking
place. If the window size is very small, suppose 2, then after sending two segments the
sender has to wait till the acknowledgment comes back. So the efficiency of the channel
goes down because for each acknowledgement the packet will reach the other side and
then the acknowledgment will travel all the way back so it is a round trip delay. Now
suppose the window size is only 1 so after sending each segment or each byte you wait
for the round trip time and then you send the next byte. So now the overhead has become
very high and now this is the minimum possible rate at witch the sender is sending. On
the other hand if the window is very large a large amount can be sent even without
waiting for acknowledgement.

(Refer Slide Time: 39:55 – 39:58)

Now when everything is fine the stream of acknowledgements will also start coming in
after this round trip delay and the overall efficiency would be high. Therefore between
congestion and the efficiency at which the data can be transferred that is the effective
data transfer speed there is a trade-off.

Suppose if these are the sequence numbers and now the receiver side may be 205 has
dropped somewhere and 206, 207, 208, 209 etc has come. So after acknowledging 204
where the acknowledgement packet will tell that the next byte its waiting for is 205
although 206, 207, 208, 209 etc have been received but he will not send any
acknowledgement. So after sometime the sender will realize that this acknowledgment
for 205 has not come. So he will start pumping 205, 206, 207, 208 and 209 again.

Now as soon as 205 arrive what happens is that this gap is closed and the window will
slide all the way here and he will say next byte that is expected is 210. Then what will
happen is, 206, 207, 208, 209 now becomes duplicated segments on the receiver side so
they are simply dropped. Using the segment numbers not only we can put them in order,
suppose 206 comes earlier and 205 has come but has come later but then they can be put
in proper sequence because sequence numbers are there. And secondly even this 205 was
lost it can still be recovered by this retransmission etc so that is how this protocol is
reliable. And when this is acknowledged the window slides.

(Refer Slide Time: 39:59-40:11)

So, this is the size of the receiving window.

(Refer Slide Time: 41:17-41:31)

Sometimes what happens is that, if there is actual congestion in the network, you will
find that only after sending some packets and seeing that some acknowledgements have
not come and the packets have got lost. So, the sender thinks, one thing is, this packet
may have got lost and secondly, may be the network is congested. So what will happen is
that, there is a mechanism for automatically reducing the window size so that now you
are going to transfer data at a much lower rate but then you are sort of trying to control
the congestion. So this is the congestion control that is in built into TCP. There are some

variations as to how this window size is going to be changed over time etc. So we will
come to later on we when will talk in more details about congestion control.

(Refer Slide Time: 41:32-41:51)

In TCP the sender window size is totally controlled by the receiver window value, the
number of empty locations in the receiver buffer. However, the actual window size can
be smaller if there is congestion in the network.

(Refer Slide Time: 41:51- 42:15)

The source does not have to send a full window’s worth of data. When you have limited
data then you will send only that data which is available. The size of the window can be

increased or decreased by the destination. The destination can send an acknowledgment
at any time.

(Refer Slide Time: 42:18 -43:50)

Error Control:
The TCP is a reliable transport protocol. TCP delivers the entire stream to the application
program on the other end in order without error and without any part lost or duplicated.
So TCP provides reliability using error control.

(Refer Slide Time: 43:51 – 44:01)

For error control there are the different things that TCP would do. It detects corrupt
segments, by detecting lost segments, by detecting out of order segments, by detecting
duplicated segments and by correcting errors after they are detected. Detecting corrupt
segments is, when checksum would be wrong in that case you can drop it. Or if you can
correct the error using the checksum then you may also correct it. Detecting lost
segments is achieved by getting the help of the sequence number. When you have the
sequence numbers and when one particular segment in between is lost you know that the
segment number is lost because that particular segment number would be missing.
Detecting segments that are out of order is, when the segments are in out of order we
have got the sequence number and so we put them in order. You can detect and correct it
at the same time. Detecting duplicated segments: If a particular segment has come twice,
may be its acknowledgement is lost or delayed, in that case once again by the serial
number we can see that it is duplicated and we can drop it.

(Refer Slide Time: 44:22 – 44:39)

Error detection is achieved by three simple tools: Checksum, acknowledgement and time-
out. Suppose you had sent the first segment and the acknowledgement never came then
after sometime you have to give a time-out and that is how the sender detects that this
segment has been lost and it has to be re-transmitted.

(Refer Slide Time: 44:38 -44:52)

Checksum, acknowledgement and time-out are the three things together offer reliability
and error detection and correction capability of TCP.

(Refer Slide Time: 44:52-48:05)

For error correction when time-out counter expires segment is considered to be corrupted
or lost and the segment is retransmitted.

(Refer Slide Time: 48:05 – 49:35)

TCP Timers: TCP has to maintain a number of timers inside. TCP has to do a lot of work
to give that reliability which is necessary on this unreliable IP service. That is why this
protocol is a little more complex than others. But then at the same time this is necessary.
For example, when you are sending a File Transfer Protocol for example, you are
transferring a file from one machine to another then even the misplacing of few bits will
make the whole file useless. So there are applications and specifically protocols like FTP
and ACTP etc use the TCP protocol because there is reliability of the connection and
absolute error control, it is error free, and the nature of communication is very high. Then
there may be applications where a loss of few bits or bytes here and there does not really
matter.

For example, suppose we are carrying a voice communication, now if you are carrying
voice communication what would happen is that even if a few bits here and there are lost
the quality is not impaired that much. Of course voice or other multimedia kind of
communication is very sensitive to other kinds of network parameters. But the point is
that, even if few bits are lost here and there then the other person will also be able to
make out. So in this case, on the other hand, if there is a delay and differing rate of
transmission because if the window size is large the rate at which you can transmit is high
and if the window size is small the rate at which you can transmit is small. So, if the rate
at which transmission is taking place keeps on varying or takes a lot of time etc is not
acceptable for voice communication. So those are the cases where we will not use TCP.
There are cases where we definitely want to use TCP because of its reliability and then
there are cases where we do not want to use TCP. So FTP and HTTP etc are examples
where TCP is necessary and we use them. TCP uses four timers: Retransmission timer,
persistence timer, keep-alive timer and time-waited timer.

(Refer Slide Time: 49:35 -51:56)

Retransmission timer: Used to control a lost or discarded segment. Suppose a segment is
lost, now, after what time will it be retransmitted? So in this retransmission timer using
the timer stamp you can get an idea of the round trip delay and this you will use to set
your retransmission timer. And there will be a buffer because it is not constant. By this
way you can set up your retransmission timer. As soon as the segment is sent
immediately the retransmission timer starts. When the next segment is also sent because
your window size happened to be more than 1 then you will need another retransmission
timer for this segment. So, for each segment we are maintaining this retransmission timer
and as soon as one of these timers is timed-out it means that the packet was sent and the
acknowledgement was not received. Therefore, immediately you have to retransmit that
packet. So this is the retransmission timer. TCP creates a retransmission timer when it
sends a segment. If an acknowledgement is received before the timer goes off the timer is
destroyed because this timer is not required. For each new segment you start a new
retransmission timer.

(Refer Slide Time: 51:57-52:03)

If the timer goes off before the acknowledgement arrives, that means the
acknowledgement has not been received before the estimated time then the segment is
retransmitted and the timer is reset. Now this timer will be reset because even though you
retransmit the retransmitted segment may also get lost so you have to start the
retransmission timer once again. And so TCP uses a dynamic retransmission time which
is different for each connection and may be changed during the connection.

TCP is a protocol and there may be a lot of connections going through this TCP protocol.
Just think a simple case of a web server. Now there may be a number of people for very
active websites and a number of people may be hitting it at almost the same time. So if
you have a concurrent server and you have spawn so many processes on the application
side and each of the server is sort of serving one particular client and a number of them.
So a number of TCP services are going on at the same time but of course they are using
different port numbers. So whenever any acknowledgment or anything comes you will
see the port number to determine to which process this belongs to. Secondly, now assume
that two clients using the same server at the same time. Now the two clients may be
connected in two different networks and the round trip time for each of these clients may
be different. Since the roundtrip time is different you cannot use the same kind of
retransmission time for each of these connections. This has to be dynamically assessed
from the time stamp so it may be different for each connection and may be changed
during the connection.

(Refer Slide Time: 52:03-52:26)

(Refer Slide Time: 52:40-52:50)

There is a Persistence timer. When TCP receives an acknowledgment with the window
size of 0 it starts a persistence timer. Window size of 0 means, it does not accept anything
at the moment because either it is overwhelmed or something is sort of wrong in between.
So anyway it is very congested and is not willing to receive anything. But now what
would the sender do?

(Refer Slide Time: 53:15- 53:23)

He will start a persistence timer and when the persistence timer goes off the TCP sends a
special segment called a probe. What would have happened is that the buffer may have
become full. So now, before sending a packet you have to find out whether it has
recovered so you have to send a probe segment.

(Refer Slide Time: 53:23-53:34)

This prevents a deadlock from occurring in case an acknowledgment is lost.

(Refer Slide Time: 54:29-54:51)

There is a keep-alive timer that prevents long idle connections between two TCP’s.
Suppose two sides the connection has been setup and nobody has closed the connection
but both sides are idle for a long time. Now, as soon as the TCP connection is setup and
after the last communication this keep-alive timer is automatically started. When the
keep-alive timer goes off, that means there has not been any communication between the
two for a long time. What might have happened is that the other side might have got
switched off. Therefore at times there can be disruption in connection. Hence it is not a
graceful connection.

(Refer Slide Time: 55:22- 55:38)

Each time the server hears from a client it resets the timer and starts the countdown from
the beginning. If it does not hear from the client after the timer times out it once again
sends a probe segment to see where the other side is alive or not. If the other side is
indeed alive and wants to keep the connection on it will reply to the probe segment and
then it will know that it still wants to do something but then it is much occupied at the
moment and that is why it is not sending. So this is the keep-alive timer. If on the other
hand it has been switched off then this probe will go unanswered. So after sometime this
side will take some action to close everything.

(Refer Slide Time: 55:22- 55:38)

Time-Waited Timer is used during connection termination. When TCP closes a
connection it is not really closed until this timer times out. It allows for FIN segments to
be received. In the previous case the last acknowledgment has not been received because
it was lost. So everything was fine but the other side has actually gracefully terminated
the condition and stopped it. So it has to wait for sometime which is more than twice the
round trip delay. Therefore it waits for the time-waited timer and once that is over then
the connection can be terminated. With this we close our discussion on TCP and there is
some more variance of TCP regarding how you control the window sizes etc. We will
discuss that when we discuss congestion control.

