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Good day. In the last lecture, we have seen some functionalities of the data link layer namely 
framing etc. And we have been talking off and on about the error control. Error control means 
error detection correction, etc. We will be talking about error detection correction in this lecture. 
We will be talking about error control now.  
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Now data errors, when data is transmitted over a cable or a channel there is always a chance that 
some of the bits will be changed or corrupted due to noise, signal distortion or attenuation etc. So 
many things may happen; for example, suppose you have a wireless channel and suddenly there 
is a burst of noise, so some of the data will get garbled. Similarly the data may have become 
much attenuated due to some loose contact somewhere or something and the one that was sent 
was not received or maybe it was received as a 0 or something.  



So, whenever you are sending some data or something, there is some communication going on 
over some transmission line, you always have to assume that data may not reach the other side in 
a perfect condition and error control has to deal with how to handle that. So if errors do occur 
then some of the transmitted bits will either change from 0 to 1 or from 1 to 0. Now what do you 
mean by error? Some bits were transmitted from 1 and were changed to 0 or from 0 they was 
changed to 1. So this is the only kind of error that may occur and if you knew where the position 
of that error is, we can correct it. Because the correct one will be the reverse of the faulty one. So 
if it is 0, then the correct one is 1 and if it is 1 then the correct one is 0. The whole trick is to find 
out whether any errors or any change has occurred and if such a change has occurred, where it 
has occurred and how to handle it. There may be a lot of noise and a lot of data may get 
corrupted in this fashion. So we will see how or what we can do about this. This data error will 
also depend on the kind of transmission medium we are using. So that is always there.  
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So, random errors change bits unpredictably. Each bit transmitted has a probability of being 
changed. These errors are often caused by thermal noise; because this thermal noise is something 
very general and is always present in any kind of these things. There is higher thermal noise or 
there may be low level of thermal noise but this thermal noise is always present. So these cause 
some random errors.  



There are some burst errors or a change in a number of bits in succession. They are often caused 
by faults in electrical equipment or by interference on some neighboring things. So, electrical 
interference is a very major cause of such burst errors.  
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So, we take transmission errors as inevitable, resulting in the change of one or more bits in a 
transmitted frame. The rate of error may be high or low, but there will always be some error; that 
is what we assume. Let us just see what it means, if there is a finite probability of error for a 
particular bit. Let us just have a look at some notations. Let Pb be the probability of a single bit 
error called bit error rate. So the probability of a single bit error is the bit error rate or b e r as 
they are sometimes called. P1 is probability that a frame arrives with no bit errors, that means 
there is no error. And P2 is the probability that a frame arrives with one or more undetected bit 
errors. So, P1 is no error and P2 is one or more errors. 
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P3 is a probability that a frame arrives with one or more detected bit errors, but no undetected bit 
errors. Sometimes we can detect which bits are in error and sometime we cannot. So, we will 
come to this later. Let F be the number of bits in a frame, if no error detection scheme is used. 
Suppose we are not detecting it specifically. So P3 is equal to 0; we cannot detect which bits are 
in error. So P1 is equal to (1 − Pb) f. If you remember, Pb is a bit error rate. Since Pb is a bit error 
rate probability of a single bit error, P1 would be 1− Pb for one particular bit.  
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In one particular bit, the probability of error is Pb. So, the probability for that particular bit has no 
error, that is, 1− Pb. And we are assuming that these errors are sort of independent, which may 
not always be the case with burst errors. But for thermal noise, we assume that there are bit 
errors. We will see that the noise will introduce an error or some other error will creep in. Let us 
say they are independent. So if there are F bits in a frame, the probability that a frame arrives 
with no error is (1 − Pb) f.  
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And P2 arrives with one or more errors, (1− P1), P2 is equal to 1 − P1So, clearly longer frame and 
higher Pb leads to lower P1.Let us try to look at some numbers.  
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So, this is an illustrative example. A defined specification for ISDN connections – you remember 
ISDN means integrated service data network which the digital service is given through the 
telephone lines. So that is the ISDN. So in ISDN connections, bit error rate on a 64-kbps channel 
should be less than 10−6 on at least 90% of the observed 1-minute intervals. Suppose that looks 
quite low, rate of error is 1 in 1016. That means only in a million bits 1 one bit may come in error. 
Suppose we want that at most one frame with an undetected bit error should occur per day on a 
continuously used 64-kbps channel, with a frame length of 1000 bits. So we want not more than 
one frame should come with undetected bit error. So we are using this for a whole day on the 64-
kbps channel and the length of the frame is 1000 bits.  
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So number of frames transmitted per day is equal to (64K by1000) into 60 into 60 into 24 is 
equal to 5.5 into 106. So if one of them is desired frame error rate, P2 is equal to1 by (5.5 into 106) 

is equal to 0.18 into 10−6. But, if we assume Pb is equal to10−6, thenP1 is equal to (0.999999)1000 is equal to 
0.999. So if P1is equal to0.999, P2 is equal to 10−3, which are about three orders of magnitude too large 
to meet our requirements. That means it is thousand times more, although one bit in a million 
looks a fairly good error rate. But we find that at the end of the day, we may have a thousand 
frames which are in error. Well, it does not work out that way that by multiplying with 1000, we 
will get so many frames in error.  
 
But the point is that whatever probability we require for a faulty frame we have got a much 
higher probability than we were prepared. We were prepared for say one faulty data frame per 
day but that is not the case at all. So this necessitates the use of error detection; that means, we 
have to do something to bring down this error rate. The other point is that sometimes one will not 
have control over the environment or the transmission line directly. It is quite difficult, because if 
you are having a wireless transmission. Now, some noise will certainly come from some other 
source. May be somebody starting a car will also give out some kind of electrical noise and 
somebody starting a machine somewhere will give some kind of electrical noise, some  mixer or 
grinder running in the house may give some kind of error. All kinds of sources are there, and you 
do not have any control over it.  



So the point is that, whatever the error that is coming, you have to do something at your end to 
get better error rates. So, we want to detect such errors and if possible we want to correct them. 
So this is what we are going to discuss now.  
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Error detection: One general principle of getting greater reliability or less error, as I said is 
always redundancy. That means you put in some kind of redundancy in the system in order to get 
better reliability. We have seen this when we were talking about the reliability of optical 
networks. But in this case, the redundancy comes in the form of extra bits that we introduce into 
the data, which means that whatever data is being sent, we also send in some extra bits 
specifically for the purpose of error detection and correction. So EDC are the error detection and 
correction bits which are actually redundant. That means they are not original part of the data, 
and they are extra bits, which have been introduced. 
 
Suppose D is equal to Data protected by error checking; it may include header fields. So the data 
which we are protecting may or may not include it; it depends on the protocol. It may just be on 
the payload and the header, all together, we may like to detect the error. Error detection is never 
100% reliable. But the protocol may miss some errors but usually we can bring down the level of 
errors to a very low figure. The larger EDC fields yield better detection. If you put larger 
redundancy you have better error detection and correction.  
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So you have the datagram coming. We add some extra bits EDC from there. We send it to the bit 
error prone link, which arrives at D’ and EDC’, now D may be the same as in D’ and has no 
error and it itself may have corrupted or both may have been corrupted. But any way we run 
some algorithm or some method for finding out whether these are alright and if we think they are 
alright we say yes. Otherwise, we say that an error has been detected. Sometimes, the errors may 
be such that although we say everything is ok, it may not be so; in that case, we say that the error 
has gone undetected.  
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Now for this error detection and correction, one concept, which is used, is the so-called hamming 
distance between the two bit patterns. And then there are hamming codes also. We will not go in 
to the details of hamming codes here, but let me just tell you what is hamming distance. Suppose 
we have two code words, like it has been shown here. This one code word is 10101110 and the 
other one is 0100110, these are the code words. By hamming distance, what we mean is that we 
have to see in how many bit positions the two code words are different.  
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So, in order to find that, we simply XOR the two. So, if We XOR these, we get this. If you can 
go through 0 1 is 1, 1 0 is 1 and so on. So you get 1 1 1 0 0 0 1 1. Now we count the number of 
1s in this XOR, which is 5. So we say that their hamming distance is 5.Please note that if the two 
corresponding bits are different in the two code words 0 and 1, 1 and 0, then we get a 1 in this 
XOR. If they are the same like 1 1 or 0 0, we get 0. This H hamming distance is the number of 
positions where the two code words differ. If you have a set of code words, say between these 
two hamming distance is 4, between these two, the hamming distance is 3, between these two 
also the hamming distance is 3.  
 
Let us see this differs in one position, two positions, these are the same in the third position. This 
is again the same. This differs in three positions. Similarly, this other H is equal to 3 for other 
peers. In this set as a whole, the minimum hamming distance between two code words is actually 
3. H of the code word is actually 3. We take the minimum of all these H values and this comes 
out to be 3. So we say that for this set of code words, the hamming distance is 3. Now, if the 
hamming distance is 3, we have an interesting situation. Let us say these code words are what we 
are sending to the other side; now if there is a single error; that means if a single bit has flipped 
from 1, it has become 0. So what has happened is that this code word will move to another code 
word.  



So this will appear as another code word in the receiving end; and the one which is received and 
the one which was sent – the hamming distance between the two will be only 1, because only 
one bit has flipped. So, only one position, what was 0 has become a 1 there, or may be what was 
1 here has become 0 there. So it has changed 1 in one position. Assuming that there is a single bit 
error, the hamming distance between the transmitted and the received code word will be 1. Now 
if the system is known, then this is the set of code words which is being used on both the sides; 
and first of all you will immediately know that for this particular set of code words H is equal to 
3 was there. That means, say, this is the set of keywords that I showed you; those are the only 
code words, which had been sent. So the hamming distance was 3.  
 
So for whichever value, this new transmuted or new changed code that was received is not going 
to be a valid code, because this is only at a hamming distance of 1 from the transmitted code. So 
this is not going to be a member of the set. So immediately, we will detect that there has been 
some error. And not only that, if you assume that there is most likelihood that we have got only 
one error then it is the one which is at a hamming distance of 1 from this transmitted code. It will 
be at a hamming distance of 1 or 2 from the code, whereas it is at a hamming distance of 1 from 
the code word which was already sent.  
 
And if you know this and if you assume that there can be only one error then you know that that 
is the code word. So you can not only detect that there has been an error, you can also correct the 
error by going to the nearest code word from which the hamming distance is minimum, namely, 
the one which was transmitted. So this is the general principle. So we will see practically how 
this is done. There is a coding scheme, for which it goes as hamming code. We will not discuss 
that, but there are other schemes, but all of them use this idea of a hamming distance.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



(Refer Slide Time: 19:08) 
 

 
 

The simplest error detection scheme is the parity check. It appends a parity bit to the end of a 
block of data. What is a parity bit? It is an extra bit, which is sort of added to some data. There 
are two kinds of parity: odd parity and even parity. Odd number of bit errors can be detected. 
Why odd number of bit errors can be detected, I will explain that. If an even number of bits is in 
inverted due to error an undetected error occurs. The technique is not foolproof, as noise 
impulses are often long enough to destroy more than one bit, particularly at high data rates.  
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But let us first of all see what a parity bit is Suppose 1 0 1 1 0 1 1 1 was the original bit pattern. 
In even parity, what we do is that we make the number of 1; we add a bit which is 0 or 1, 
depending on whether the number of 1s in the original pattern is even or odd. If it is even parity, 
we want to make the number of 1s even, so the number of 1s were originally even over here. So 
in 1 0 1 1 0 1 1 1, we have six 1s. So we already have an even number of 1s here, in the added 
parity bit we just give it a value 0, whereas  in the other one, that is, 1 1 0 0 0 0 0 1, we have 
three 1s. So this was odd, so the added parity bit was also made 1, so that overall the number of 
1s in this data plus parity bit taken together is always even.  
 
That is, the number of 1s is always even in even parity if everything is fine; and the number of 1s 
is always odd. Similarly, the number of 1s is always odd in odd parity. Now if you just think 
about it a bit, if you are using even parity then all the valid code words have even number of 1s 
in them. So what is the number of position and what is the minimum number of positions in 
which they have to differ – these two different code words? Well, the minimum number is 2; that 
means, the hamming distance of this set of code words will be minimum 2. And if the hamming 
distance is 2 and if there is a single error, what is going to come is that we are going to get a code 
word in the receiving end, which has got an odd number of 1s. And, if it has got an odd number 
of 1s, we immediately know that this could not be a valid code word.  



So we know that there has been some error, although we cannot say where that error is, or what 
the original intended transmitted code is, because if you think of two code words which are at a 
distance of 2 and the transmitted one – let us say we had even parity, that is, even number of 1s; 
their hamming distance minimum was 2. Let us take the worst case: the minimum is 2 and then 
the transmitted one of this code word was this. Where one of the bits flipped, we get something 
in the middle, which is at the hamming distance of 1 from the two valid code words. So we know 
that this has been transmitted as invalid. In that sense, this is not a valid code word. So an error 
has occurred. But I do not know whether something from here came here or the original 
transmitted code was here and it came here, because we do not know where the error has 
occurred. So in this particular case, we can nearly detect an error. We cannot correct it at the 
receiving end. So the case of parity is a very simple kind of scheme. 
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So once again, if you go back to the earlier slide, I mentioned that odd number of bit errors can 
be detected. Now as I said if there is a single bit error, it will be detected because now we have 
got an odd number of points. Well, if there are odd number of errors, that means if there are one 
error or three errors or five errors in that bit stream, then again, we will get an odd number of 1s 
on the receiving end. So we can detect that there has been an error. We do not know the number 
of errors, but in any case, we can detect it. But if there are only two errors, then it will again 
become an even number of ones on other side which may be a valid code word.  



So we will not know whether there has been any error or not. So if there are even numbers of 
errors, this parity check will go undetected by this single parity bit error checking. Running the 
parity check is very easy.  
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You just run them through some XORs and invert it if you want it in odd parity or if you want an even 
parity, you can get it and this is very simple. Now parity testing: the receiving device can work out if a bit 
has been corrupted in a character by counting the number of 1s in the character and parity bit. If even 
parity bit is being used but there are an odd number of 1s then an error must have occurred. Similarly, if 
odd parity is being used but there is an even number of 1s then an error must have occurred.  
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One drawback with parity testing errors is that if two errors occur in the same character, they will 
not be detected. This is because if there were an even number of 1s originally, if two bits are 
changed, then there will still be an even number of 1s because either two 1s will become 0. So 
the even number of 1s remain even or two 0s will become 1, also even number of 0s remain even 
or 1 1 has become 0 and 1 0 has become 1. So the number of 1s does not change and they still 
remain even. So it remains undetected.  
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There is some improvement over this and we can see how to make it more efficient. This is an 
extension of parity bit, which is called block parity testing. This is how it works. Suppose we 
have a long stream of 1s and 0s, 1s and 0s, 1 0 1 1, etc. So what we do is, we break them up into 
blocks of bits. Let us say 8 bits; we take the first 8 bits as the first pattern. Then the next 8 bits 
are the next pattern, and so on.  
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So what we do is, for each group of 8 bits a parity can be added. In this case let us say even 
parity, so the first 8 bits were 1 0 1 0 1 1 1 0. So for even parity if there are five 1s here so I have 
to add a 1, there are three 1s here, I have to add 1, there are four 1s here; so I add a 0. In this way 
for each block of 8 bits, we add a parity bit. Then for every N blocks the parity is calculated as a 
new character (in this case 8 into 8). So this is how it goes. What we do is, if you look at this as 
some kind of a matrix. So, we calculate the parity on this side. We calculate the parity along the 
column also. So five 1s, so we make it a 1 over here for this parity. Then for every N blocks the 
parity is calculated as a new character. I have mentioned that. I have got parity on this side. So 
for this block of, say, 64 characters, I have got say 8 plus 8plus1 is equal to 16plus1 is equal to 
17 parity bits.  
 
 
 
 
 
 
 
 



(Refer Slide Time: 27:42) 
 

 
 
Now if there is a single error, which has occurred, what is going to happen is that where ever it 
may have occurred in that row the parity test will fail. Similarly in the column also the parity test 
will fail; and since one column and one row intercept exactly at one cell, we know that that is the 
bit which has become corrupted. So now if an error occurs, we will know which character and 
which column it has occurred in. Not only can we detect the error but we can also correct a 
single bit error by simply changing it. So since we know that this is the bit which is in error, I 
can simply flip it at the receiving end itself without any referring back to the transmitter. And we 
know that we have got the correct one. We can not only detect errors but we can also correct 
single errors in block parity testing.  
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So this is just a better diagram for this; we have got this system. This is using odd parity. I mean 
there is no reason to use the same kind of parity in both the cases. You can use odd parity for the 
transverse parity bits and you can use even parity for this and calculate this. So if there is some 
error we can compute it. If there is more than one error then you may get into some kind of 
trouble because you will not know which bit is in error. If  there are two rows and two columns 
which show parity error then you will not know which row and which column will match 
together to get that particular bit, which has been corrupted.  
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So we not only have error detecting codes but we have some error correcting codes also. By   
comparing error detection and error correcting codes, error correcting codes require more 
number of bits because we want to correct it. So we require more number of bits, which is a 
problem. In error correcting codes, rather than just detecting an error, sometimes it is useful to be 
able to correct an error as well. For example, CDs use error correcting codes to ensure high-
quality sound reproduction even if the CD is slightly damaged. So we are talking about some 
music CD. So even if a few bits are in error still it will use error correcting code to handle that. 
We have already seen that we can correct a single error in a block parity check. There are other 
techniques that can correct more number of errors.  
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So what happens is that your one scheme could be error detection. So suppose some alphabet A 
was sent, this was a valid code word, and there was a noisy channel. So some error got 
introduced. So, 1 0 1 1 0 1 became 1 0 0 1 0 1. That means the third one from the left has 
become a 0. So this is an invalid code word. We know that the original one was using odd parity 
kind of thing, so even number and odd number of 1s were there. But in the even number there 
was even parity and hence even numbers of 1s were there. But I have got an odd number of 1s, I 
do not know where the error is, so what we do is, we request for retransmission; that could be 
one approach. But if I can correct a single error on the other side, then I do not need to ask for 
retransmission. Overall my efficiency may improve but of course for error correction, I have to 
send more bits. So that is the one area where I am sort of losing something. So it all depends on 
how you do your engineering and how you come to your particular point of say optimal amount 
of error correction.  
 
(Refer Slide Time: 32:06) 
 

    
 
So another way of checking for errors was to use a checksum. This checksum is also used in 
other fields. So this has been borrowed not just from communication from other fields for 
accounting also, sometimes checksum is used. This is just used for this sum just for control 
purpose. So in some arbitrary order you sum it and then with all the data you also check with the 
sum.   
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This is a number calculated from the data and sent along with the data. If any errors occur during 
transmission then checksum for the received data will differ from the transmitted checksum. Of 
course, the data may arrive alright, but the checksum may become faulty. But even then in that 
case the checksum and the data will not match. So checksum can only detect errors; it will not be 
possible to correct it. A simple checksum can be calculated by adding all the data together. For 
example if the data is 121, 17, 29 and 47, then the checksum (add all the data) will be 214. We 
could transmit 121, 17, 29, 47 and 214. We know that the last number is the checksum, which 
should be the sum of all the numbers which have been sent. A checksum is usually restricted to a 
certain number of bits, typically 16 bits. If the checksum is longer than this, then only the lower 
16 bits will be transmitted. But checksum is not very efficient and not widely used. 
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One scheme, which is widely used, is the so-called cyclic redundancy code. What is a cyclic 
redundancy code? A cyclic redundancy code (CRC) is a more sophisticated type of checksum. If 
a CRC is used, it is extremely unlikely that any errors will go undetected. A lot of different types 
of errors are caught by the CRC. Although the technique may sound a little complicated, in 
practice calculating a CRC is easy and can be implemented in hardware using linear shift 
registers which is a very simple kind of circuit; through that, we can compute it very easily and 
quite fast. So, the CRC is preferred in many data link protocols.  
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So what is CRC? Let us just look at the details of it. Essentially the data is regarded as being one very 
long binary number. After all what you are sending is a string of 1s and 0s, and you can take a 
few of them and just look at it as a binary number. If you are adding the header also, then it got 
even more mixed up. I mean it was not to be interpreted as a number. But for CRC purpose, we 
interpret it as a binary number.   
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So to this we add some place holder digits at the end and it is divided by a generator polynomial 
using modulo 2 divisions. So for modulo 2 divisions, you do the same kind of division. Only 
thing is that if they match then we get a 0, if they do not match we get 1. The remainder at the 
end of this division is the CRC. So let us just look at this.  
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So given a k bit block of bits, the transmitter generates an n bit sequence, known as a frame 
check sequence (FCS), so that the resulting frame, consisting of k + n bits, is exactly divisible by 
some predetermined number. The receiver divides the incoming frame by that number and if 
there is no remainder, assumes there was no error. You look at it as a number; find the CRC; add 
it to the end; so what will happen is that you will get a longer number. This longer number is 
supposed to be divisible by the polynomial, which the receiver side knows. So the receiver side 
will do its own division and if the division is ok, then it will assume that there is no error. If it is 
not ok, then obviously there is some error. So we have D data bits and R: CRC bits. So how are the 
CRC bits computed? D * 2r XOR R. So this is done by some division. So we will see how it is done.  
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This is the formula: D into 2r by G. This is the generated polynomial. Why it is a polynomial – 
that we will see. Actually the bit pattern is represented as a polynomial; ultimately, this so-called 
polynomial will be a binary number like this. Suppose the G is 1 0 0 1 and what you are trying to 
send is 1 0 1 0 1 1. So this is what we are trying to send; and this is the generated polynomial. 
What we are going to do is that we are going to add some extra bits. So this D into2r means, 
adding so many 0s at the end.  
 
So in this case, say, r is equal to 3; so we have added three 0s to the end and I do a division as it 
is done. So 1 0 0 1 only thing is we do a modulo 2 kind of operation. So 1 1 becomes 0 1 0. As it 
gives 1, you got a 1 0 1 and so you got a 0 and so on. So in this way the division goes on till we 
sort of exhaust this and we get 0 1 1 as the remainder. And what will happen is that if you add 
this 0 1 1 over here, instead of sending 1 0 1 0 1 1, what we do is, we add 1 0 1. Any way, if you 
add it what will happen is that this will become exactly divisible modulo 2. The modulo 2 
divisions will come out exactly.  
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So the CRC process can be very easily implemented in hardware using (LFSR) Linear Feedback 
Shift Register. The LFSR divides a message polynomial by a suitably chosen divisor polynomial; 
the remainder constitutes the FCS, which is added to the data bits.  



Commonly used divisor polynomials are: CRC 16 is equal to X16 plus X 15 plus X 2 plus 1.So actually 
it is a 16 bit binary number as I said the G is called as generator polynomial. So G will have one 
in the sixteenth position, one in the fifteen position, one in the second position, and one in the 
first, that is, 0th position, which means that there are going to be four 1s in this G and all the rest 
are going to be 0. So how it is generated polynomial? So we are not going into that, how this 
particular polynomial, why was this particular polynomial chosen rather than some other 
polynomial. But as we have seen, they cover a lot of different types of errors. Previously if you 
remember, in our parity bit we were just getting odd numbers of errors. If there are an odd 
number of errors then we can detect it here and we can detect a lot of different cases of error. So 
it is extremely unlikely that if the CRC is alright, then there has been some error. So there are 
different protocols and different systems with different generator polynomial. So CRC CCITT is 
equal to X16 plus X12 plus X5 plus 1 and so on.  
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From the above slide we can see CRC 32 and CRC 8. So CRC 8 means this is an 8-bit thing. 
This is the eighth position, second position, first position, and zeroth position are all 1s, rest are 
0s. So this is used in ATM. CRC 10: this may also be used; and CRC 12. So these are the 
different CRCs.  
 



Actually not all polynomials will give you the same kind of error coverage; that is known, and 
people have found out some properties which are good properties to have in a generator 
polynomial and then people have found out some good polynomials which will cover a lot of 
errors. So HDLC uses some kind of errors. 
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So CSMA/CD, FDDI, and ATM – they use CRC 32 and so on. I am just showing you, but you 
need not remember any of these. 
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Now, we come to a slightly higher level, data link protocols. We are still talking about errors and 
error control, but the point is that, we have been talking about this parity and CRC that is error 
control at a lower levels. We say a lower level because it is a small amount of error. We can 
possibly handle it using such error detection or error correction kind of schemes. But what might 
happen is, because of a very vast noise or something it may garble the data so badly, that it is 
entirely unrecognizable on the other side. Even if you have an error correction scheme, because 
none of the error correction and error detection schemes are 100% infallible. So there is still a 
possibility that there will be some undetected errors and then there will be some data which 
becomes so bad that there is no question of any error detection or correction. We require some 
higher-level schemes also in addition to whatever we have talked about this parity CRC etc. So 
we will now see higher layer data link protocols.  
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Once again, data link protocols could be of different types; for example, unrestricted simplex 
protocol: this does not do much as we will see; stop and wait protocol; stop and wait ARQ for a 
noisy channel means that ARQ stands for acknowledgement request. That means an 
acknowledgement is expected. One bit sliding window protocol: this is similar to stop and wait, 
sliding window with go back N ARQ, sliding window with selective reject ARQ, and so on. 
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The first is Unrestricted Simplex Protocol. Well, it simply sends, it does not do any kind of error 
control, and so this is the simplest situation. We have a sender to fetch a packet from a network 
layer, construct a frame; and send the frame to the physical layer. So the sender is just going on 
sending without bothering about what is happening on the receiver end. So if things are alright, 
the receiver waits for an event, receives a frame from physical layer and passes the packet to 
network layer. The faulty things, which have gone in, maybe it is the responsibility of higher 
layer systems to take care of that. But the higher layer application does not bother, if a few bits 
are bad say in the case of a voice channel. 
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When data is sent as a sequence of frames, two types of errors can occur: One is lost frame: the 
frame has been lost entirely and the frame fails to arrive at the receiver. This may be due to a 
noise burst destroying the frame beyond recognition. It may have a recognizable frame arriving 
at the receiver but some bits are in error. A frame may be damaged or a frame may be entirely 
lost. See sender and the receiver. The sender is sending a number of frames one, two, to frame n. 
Frame one is going first. So the point is that some of the frames in between may get lost all 
together. We have to make the worst case assumptions. Error control is concerned with insuring 
that all frames are eventually delivered (possibly in order) to a destination. So, how? Three items 
required are acknowledgment, timer and sequence number.  
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Acknowledgment – what do we do with acknowledgment? Typically reliable delivery is 
achieved using the “acknowledgments with retransmission” paradigm, whereby the receiver 
returns a special acknowledgment (ACK) frame to the sender indicating the correct receipt of a 
frame; that means the receiver, after receiving the same will send an acknowledgment. In some 
systems, the receiver also returns a negative acknowledgment for incorrectly received frame. So 
this is a hint to the sender, so that it can retransmit a frame right away without waiting for a timer 
to expire. We will come to this timer to expire. The point is that there is a two way 
communication. The sender is sending the frames, and the receiver is sending the 
acknowledgments. If it gets a damaged frame, then it will send a negative acknowledgment. Of 
course, if it does not get any frame, then it will not know whether anything was sent at all. In that 
case, it may not send any acknowledgment or negative acknowledgment anything at all.  
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The situation is something like this: suppose 0 was sent by the sender and it arrived. The receiver 
sent an acknowledgment 0 then a 1 was sent. Suppose I am just taking this bit by bit, just to 
make it simpler. Suppose 1 was sent it came with some error, we do not know about what kind of 
error it is. So the frame number 0 was acknowledged, frame number 1 was received, but it was 
damaged, so a negative acknowledgment was sent. That means, frame number 1 was not rightly 
received, so frame number 1 is going to be retransmitted by the sender. This is the argument. 
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The other thing we require is a timer. One problem simple acknowledgment, negative 
acknowledgment schemes fail to address is recovering from a frame that is totally lost, and as a 
result, fails to solicit an acknowledgment or a negative acknowledgment. What happens if an 
acknowledgment or negative acknowledgment becomes lost? Retransmission timers are used to 
resend frames that do not produce an acknowledgement. When sending a frame, schedule a timer 
to expire at some time after the acknowledgment should have been returned. If the timer goes 
off, retransmit the frame.  
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So this is the scheme, you see a frame which was sent was lost. So the receiver of course did not 
know anything. What happens is that as soon as the frame was sent, at the same time a clock was 
started in the sender’s end. I have to assume that the system has transmission time, and this is the 
time it might require for the receiver to process it and send an acknowledgment. Then the 
acknowledgment will take some time to reach the sender. So, all that is taken into the account 
with some amount of time thrown in, and that is set in the timer. So if the timer goes out that 
means, if there is a time out, now the sender knows that the frame must have been lost, otherwise 
an acknowledgment would have come. So he sends the frame again.  
 
The other thing that might happen is that suppose the frame was sent the 0 th frame was sent it 
was received and then an acknowledgment was sent, then the acknowledgment was lost. He 
would not know whether reached at all or the acknowledgement was lost. So after a time out, he 
will send this frame again. So this is a case where the frame has been duplicated. Depending on 
what kind of protocol we are using the receiver may or may not understand that this frame is 
actually a duplicate of this. Maybe two such exactly similar frames were supposed to come one 
after the other because it is after all coming from some application, which is absolutely unknown 
to the data link layer. So the frame may get duplicated. But then there are some protocols which 
take care of that where if the receiving side will know that this is actually a duplicated frame. We 
will come to that protocol later on.  
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And the third technique that we use is the so-called sequence number. So retransmission 
introduces the possibility of duplicate frames. To suppress duplicates, add sequence number to 
each frame, so that a receiver can distinguish between new frames and old copies. So that if the 
frames are numbered sequentially like say 0, 1, 2 etc. as I was showing you the case where the 
receiver gets two frames which have the same number 0, it knows that acknowledgment must 
have got lost or something like that happened. The sender sends the same frame twice, so he will 
discard just one of them. So collectively, the mechanisms stated are referred to as automatic 
repeat request (ARQ). The objective is to turn an unreliable data link into a reliable one. Three 
versions of ARQ have been standardized: stop and wait ARQ, Go back N ARQ, and Selective 
Reject ARQ. 
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So we have the stop and wait ARQ, which is based on the stop and wait flow control technique. 
The source station transmits a single frame and then waits for an acknowledgment to arrive. No 
other data frames can be sent until the destination stations reply arrives at the source station. So it 
waits for the acknowledgment; if the acknowledgment does not come it will resend after a 
automatic repeat request. So it will automatically repeat the frame. 
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So this is the scheme, we have the sender which fetches a packet from network layer, construct a 
frame, send the frame to physical layer, wait for an event. So if it gets an acknowledgment then it 
is fine then it is going to send a second frame. If it does not get an acknowledgment it will send 
the same frame again. So until it gets an acknowledgment or the timer runs out, the frame which 
was already sent that has to be stored locally in some buffer in whichever system is handling this 
data link control. And the receiver side also waits for an event, receive a frame from the physical 
layer, pass a packet to the network layer, send an acknowledgment to the physical layer. So these 
is the stop and wait protocol. This is a very simple protocol. Unfortunately, this is not very 
efficient as we will see that later.   
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And so we will continue our discussion on this error control and then we will move on to flow 
control in the next lecture. So this is a simple kind of protocol but this has got efficiency 
problem, in the sense that this is not very efficient. So we will continue this discussion in the 
next lecture. Thank you. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Preview of next Lecture 
Computer Networks 
Prof. Sujoy Ghosh 

Department of Computer Science & Engineering 
Indian Institute of Technology, Kharagpur 

Lecture - 17 
Stop and Wait Protocol 

 
Good day, so in the last lecture we were discussing about stop and wait protocol .we have seen 
what it is. It is really a simple kind of protocol which is used both for error control as well as for 
flow control in some cases. But since this is a simple protocol we will look at its performance 
now. So we will first finish our discussion on this stop and wait protocol.  
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And this we have already seen, so each sender station sends one packet which is ACK’ed. If it is 
comes with some error it may send a negative acknowledgement, it may not arrive at all. In that 
case the senders will time out in either case that means, it is getting a negative acknowledgement 
or whether it is getting a time out. It will retransmit that frame.  Retransmit whichever frame was 
just transmitted earlier and the point to note is that there is only one frame, which is in transit in 
the channel at any point of time. Whether it is the frame or the acknowledgment, now we have 
discussed some of the major techniques which are used in the data link layer, so what we will do 
now is that we will look at just one more protocol.  
 
This is somewhat general version that we have discussed.  PPP that is the point to point protocol 
which is used for point to point communication but there could be a point to multi point 
communication also.  For this we have this high level data link control, this is the name of the 
protocol. So this is the name of the protocol or HDLC in short.  I mean this is not so high level 
any longer this is not considered, so high level any longer but even then this is an important 
protocol. So there are some variations of this, which are used in various places. So we will just 
look at some generic the way how this HDLC is important.  
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Now this is an important data link protocol this HDLC or some variant say this is widely used, it 
also is the basis for many other important data link control protocols.  So we suggest three types 
of stations. One could be primary station this is responsible for the operation of the link. By  the 
way  you  do not  have to remember  all these  because when  you are  trying  to use it  or design  
it for some  particular  situation you can always look up the reference  and  see what exactly the 
different frames  are what are their formats etc . I am trying to give you a flavor of the kind of 
information about which a typical protocol would need to exchange.   
 
So  with  this example  we  come  to the end of this general data link control, but still  we  have 
seen  some  examples of data link control, for example we have seen some examples of MAC  
like with token bus,  token ring, etc. We will see other examples of MAC as we take up other 
kinds of networks. Similarly we have seen some kind of error and data control.  By the way the 
similar approach is used in some other higher layers also. We will talk about it when we come to 
it and we will talk about more specific and more widely used systems in the next class onwards. 
So  in  the next class  what we will do  is,  we will look at  another  type of communication  and 
how MAC is done on that in satellite communication .So that will be the next topic. Thank you. 
 
 
 


