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Today, we will start with the next chapter- on searching with costs. In the last class, what 
we had done was- we studied the first search algorithm, which was as follows: that we 
start with initialize, and we were maintaining a list called open. We put the start node in 
s. Then, if we find at some point of time, that open is empty and we have still not found 
the goal, then we terminate with failure. Then, select a state n from open, terminate if n is 
a goal; then, we terminate with success. Otherwise, we generate the successors of n using 
O and insert them in open, and finally, go to step 2. So, what we are essentially doing is, 
we are progressively maintaining a frontier of the nodes. And in each iteration, we are 
picking up a node from the frontier, expanding that. So, that extends the frontier and we 
continue in this way. 
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Open maintains the current frontier. If, at any point of time, we find that open is empty, 
that means we have reached the end of the frontier and we have still not found a goal. So 
then, we will terminate with failure. One thing that I had not mentioned so far is- that 
how do we maintain the part of the state space that we have already visited? That is 
important, because there are cases where we have to know that a node is already visited, 
so that we do not revisit that node. So, this is the extension of the same algorithm, where 
we will save the explicit state space. Let us see how we do that.  
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See, this just shows the difference with the previous algorithm: the only changes that I 
have made are highlighted in yellow. So, we are now maintaining another list called 
closed. When we select a state n from open here, we save it in we save the state in closed, 
right, and there is one difference here; that when we generate the successors of n using O, 
we will check whether those successors already belong to open or closed. If it already 
belongs to open or closed, then we will not insert it in open again, otherwise, we will 
insert it in open, right? Okay. Now, can you tell me what changes I need to make in this 
algorithm to also ensure, that after I find the goal, I can trace the path from the start state 
to the goal? Any additional things that I need to maintain?  
 
Now, this algorithm is clear right? Yes or no? So, in this algorithm, I just want to add a 
few more features, so that I am able to maintain the path from the start state to the goal.  
(Student speaking.) What we can do is, with every node, with every state, we will 
maintain a parent pointer, and when will we set the parent pointer? Yes, when- (Student 
speaking.) not exactly. Whenever we are expanding the node Whenever we are 
expanding a node n and generating a successor m, we will make the parent pointer of m 
equal to n, right? So, whenever we are pushing a node into open, we will maintain- for 
every node that is there in open- we will maintain the parent pointer, right? 
 
Later on, we will see that this is a useful thing to do, because we will be looking for 
optimal paths, at the minimum cost paths to a node. There you can arrive at a node from 2 
different paths. So, when you come along one path and then later on you find a better 
path, you will shift the parent pointer to the new parent. We will go into that as we 
progress further. What we have done so far is, we have studied just the basic search 
algorithm, where we have a list called open, a list called closed and we are transferring 
nodes from open to close as we are expanding there, right? So far, we have not talked 
anything about costs. Now, let us see- how do we introduce costs into the picture?  
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So, when we have to search and optimize, or, in other words, we have to find out the 
shortest path or the minimum set of operators to reach the goal, then, we will have 
additional issues here. Besides these basic 4 tuple, along with each operator, we will have 
some cost associated. If you just want to reduce the number of steps, then, the cost can be 
one for every operator. In other cases, an operator can have an associated cost. Like- for 
example, you know the traveling salesperson problem. In the traveling salesperson 
problem, we have a set of cities, and the job is to find a tour for the traveling salesperson, 
to cover all the cities and then come back to the starting city, right? And there can be 
various different tours.  
 
For example, this is one tour. Another tour could be: I go from here to here, then here to 
here, and like this, like this and like this, like this, right? So, if you look at a formulation- 
a state space formulation of TSP, what should we do? We will start with one- what will 
be your state? A state could be the partial tour that we have already covered. So, I have 
already covered city AB and I have not yet covered anything else. From here, I can pick 
up city C or I could go from A to B, and then, from there to D, right? Or ABE, right? And 
then, from here again, I could go to ABC and then, say, E, right? So, this is the 
formulation. And what are the operator costs here? The operator cost is the cost of 
traversing from the from B to C here. The edge cost BC is the operator cost here, for 
here, the edge cost BD is an operator cost, right? 
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When we actually look at an optimization problem, then, the each step of the 
optimization is going to come with some cost, right? And that is what we will augment 
our basic formulation unit. So, what we have is this 4 tuple, and we have to find- there 
can be several things that we may want to find. One is, we might ask for the minimum 
cost sequence of transitions to a goal state- any goal state- and we just want a minimum 
cost sequence of transitions to that, right? In this case, for TSP, the goal state will be 
defined as a valid tool. And then, if we define the cost operators like so, then, the 
minimum cost sequence of transitions to the goal state will also give us the minimum cost 
goal, right?  
 
We could also ask for a sequence of transitions to the minimum cost goal. What would 
that mean? Okay. Suppose, we define the goal of the 8 queens problem, as any 
arrangement of the 8 queens. So, every state is a goal, right? And if there are 2 queens 
attacking each other, then, we associate a cost with it. Essentially, what we are saying is- 
place the queens in the board in such a way that the minimum cost is incurred, and the 
minimum cost incurred can be 0 when all the queens- none of the queens are attacking 
each other, right? There, we will not associate any cost with the operators, but we will 
associate the cost with the goal.  
 
We will see some kinds of search algorithms where we start- where all states are goals- 
and we will iteratively improve the goal, until we reach the minimum cost goal. Another 
option is a minimum cost sequence of transitions to a minimum cost goal. So, operators 
have some cost, goal has also some cost and we want to find the minimum cost sequence 
of transitions to the best goal. Now, these problems are somewhat related, between each 
other- the same problem can be formulated in one or more nodes. Now, let us see how we 
augment our existing algorithm- the one that we have studied so far- to take into account 
this cost. You will see that it is very familiar to an algorithm that you already know. Let 
us start. 
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What we are doing here is: like previously, we are having open, which contains the start 
state s. We have closed, and we set the cost of every state will be denoted by C of that 
state. So, c is the cost function for the state. Initially, the cost of the start state is assigned 
to zero. Then, again, like previously, if open is empty, we terminate and fail. Otherwise- 
now here is the difference. We will select the minimum cost state n from open. Out of all 
the states in open, we will pick up the one which is minimum cost state. Later on, we will 
talk about what we do in case of tie breaking. We will come to that later. Assume now, 
that all costs are distinct. So, we just pick up the minimum cost state. We pick it up from 
open and save it in closed. 
  
Now, in order to do this, what will be the data structure- one possible data structure, for 
open? A heap, right? But we will see that we will need more than a heap, because the 
costs of the states may change. So, in a heap, if the cost of some states inside the heap 
changes, then you will have to rearrange the heap you have written. There are ways of 
doing that. The 4th step is the same as before- we terminate, if we have found the goal.  
Now, see that we will pick up the minimum cost state n from open, and if that state is a 
goal, then only we terminate with success, right? Because we are always picking up the 
minimum cost node from open. So, this part is simple. Only the selection from open is 
based on the minimum cost. 
  
Now, when we expand, this is what we do: we generate the successors of the state n and 
then, for each successor m, if it does not belong to open or closed, then we will insert it in 
open. But with what cost? We will insert it in open with the cost cn, that is, the parent’s 
cost, plus the cost of the operator to take it from n to m. This gives us the cost that we 
incurred to come up to state n plus the additional incremental cost to go from n to m. And 
we will assign that cost as cm and insert m in open. Now, suppose n already belongs n 
already belongs to open or closed. It is already there in open or closed. Then, we will 
again we will set cm to the minimum of its original cost and the new cost that we 



compute by cn plus cnm. So, if we have arrived at the same state m, through another 
path, which has cost lesser than the original path, then we will replace the existing cost by 
this cost. Clear?  
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And then if we find that cm has decreased- if cm has remained the same, then there is 
nothing else to do. It is already there in open or closed and the new path that we have 
discovered, is a larger path, so we just ignore it. But if the cost has decreased and m is 
already in closed, then we will move it to open. If m is in open, then we just update the 
cost and leave it like that, because then, subsequently, m will be expanded, but if m is not 
has already been expanded and has been taken to close, then what has happened is that 
we have found a better path now. And so not only do we have to again expand m, but we 
may have to expand several successors of m also, because their cost may also have 
decreased, right? And then finally-actually, here I have left out the last step. The last step 
is then, again, go back to step 2. That is the loop, right? 
  
Let us take an example to work this out and see what happens. Then, we will compare 
this with some of the algorithms that we already know and you will see that there is a lot 
of familiarity here. Let us take one state space which has the following states- let us say 
one. Can you see this size from the back? Let us say that this is the goal state. This state 
space will actually be given to the algorithm in an implicit form. So, I am just drawing 
this for our convenience. Actually, the search algorithm will not be able to see this whole 
graph at one time; it will only be able to see the nodes that it expands. Let us say that the 
costs are as follows: this is cost 2. We will start by maintaining 2 lists: one will be our 
open and the other will be the closed list. 
 
Initially, open contains the state one, and we will associate the cost of 0 with it. 
Remember, in the first step of the algorithm, we had set cs is equal to 0, right? So, we 
will expand open in the first step and put open in put one in closed. We will put this in 



close. And what is open going to contain now? The 2 successors- 2 with a cost of 2, and 5 
with a cost of one, right? Then, we are going to pick up the minimum cost state from 
open. So, we will pick up 5 and then, we will put 5 in closed, with cost one. And in open, 
we will now have- 2 will remain with a cost of 2; 5 is going to get expanded. So, we will 
have 9 with a cost of 2, right?  
 
Then again, out of these 2, these 2 have the same cost. So, we will pick any one of them. 
Let us say that we pick up 2. Then, we will have 2 with a cost of 2 in closed, right? And 
then, here, we will have 9 with a cost of 2. And for 2, we will have 6 and 3, right? So, 6 
with a cost of 5 and 3 with a cost of 3. Okay. Then, next step: we will be picking up 9 
with a cost of 2. And what do we have here for 9? Only 10, right? So, 6 with a cost of 5 
will be there. 3 with a cost of 3 will be there and we will have 10 with a cost of 10, right? 
Then, we will be picking up 3. Next, in closed, we will put 3 with a cost of 3. What will 
we have here? We will have 10 with a cost of 10, 6 with a cost of 5 and we will have 4 
with a cost of 5. Again, we have a tie. Let us say that we pick up 6. So, we take 6 with a 
cost of 5. 
  
Now, something interesting will happen. When we have 6 with a cost of 5, then okay. We 
will have 4 still, with a cost of 5, right? We had 10 with a cost of 10. Now when we 
expand 6, we are going to have 2 new entries. One is 7 with a cost of 6, and now 10 
comes with a cost of 9. It is already there in open. So, we just update the cost and we now 
have 10 with a cost of 9. If it is already in open, we just update the cost. See, so far, 
nothing has come out from closed to open. Nothing has come out, right? Then, what will 
we pick up next? 4 with a cost of 5 will come out. So, we will have 7 with a cost of 6, 10 
with a cost of 9, 8 with a cost of 6, right? Then, let us say we pick up 7 with of 6. What 
do we have here? We have 10 with a cost of 9, 8 with a cost of 6 and for 7, we will have 
11 with a cost of 16. Then, we will pick up 8 with a cost of 6 and we will have 10 with a 
cost of 9, 11 with a cost of 16, and we now have 12 with a cost of 21. So, the goal has 
come into open.  
 
Goal has come into open, but if we just pick up the goal with a cost of 21, we will be 
incorrect. We still cannot pick up the goal, though it is there in open. So, what- because 
there might still be a better path to reach this goal, and because we are optimizing and our 
objective is not just to find the goal, but to find the best path to the goal, we will not stop 
here. We will continue doing this, until we pick up the goal for expansion. Next, what 
will we pick up? We will pick up 10 with a cost of 9. That is going to give us 10 with a 
cost of 9. Then, we will have 12 with a cost of 21. We had 11with a cost of 16, but now 
when we expand 10, we get 11 with a cost of 12. We replace this with 11with a cost of 
12, right, and then we will pick up 11 with a cost of 12. And we have a cost of 21, but 
this is going to get updated because of the expansion of 11. And we are going to get 12 
with a cost of 13, right? 
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Next, 12 is selected for expansion. That is where we terminate. So, we find that the path-
the best path to the goal node has a cost of 13. (Student speaking.) We will come exactly 
to this analysis now. We have to be now be sure that what we have done is correct, right? 
Yes. (Student speaking). The algorithm, yes. Slide. (Student speaking).Yes. (Student 
speaking).It is possible. We will come to all those cases now. We will systematically 
explore all this cases. It will depend on the kind of state space that we have. Now, do you 
see familiarity of this algorithm with something? Dijkstra’s algorithm. This- when we are 
looking at positive edge cost. When we are looking at positive edge cost, this is nothing 
but Dijkstra’s algorithm, right? But, when we have costs with negative cost, then we 
know that Dijkstra’s will not work. And the reason is exactly as you were asking- that 
node can come back from close to open, because even after you have expanded that node, 
you might find another path to some other node of higher cost. 
 
In this case, what is happening is, if all the edge costs are positive, then, when you are 
expanding your nodes, you know that there cannot be any other node which has lesser 
cost, because you have already explored the frontier up to that cost. And any nodes 
beyond that frontier is going to add up more cost with it- more positive cost with it- so 
those other states are going to have more cost. So, you cannot have anything with lesser 
cost, right? But, if you allow negative edge costs, then it is possible, that a successor of a 
node of cost 20 has a cost 5. If you have expanded the cost up to frontier of 20, they 
could still be some successor down below, which has a cost less than 20, because of the 
negative cost, right?  
 
In those cases, we may have to bring back the node from close to open and it will still 
work. It will not work, however, if you have a negative cost cycle. Yes. (Student 
speaking). Where will we stop in that case? We will stop when we have exhausted open. 
Now, can it be possible that open is never exhausted? If you have a negative cost cycle, 
then, open will never be exhausted. You will keep on picking up nodes from open and 



putting it back into open after finding a better one, because in that loop, the cost of the 
nodes will keep on decreasing in the negative cost cycle. So, you will keep on moving 
nodes back from close to open and we expand in them, right, but as long as you do not 
have a negative cost cycle, then, your algorithm will terminate, right?  
 
So, result number one is, if all operator costs are positive, then the algorithm finds the 
minimum cost sequence of transition to a goal. And this is exactly as in Dijkstra’s: if 
operator costs are positive, then, what we have is exactly Dijkstra’s and no state will 
come back from closed to open. If operators have unit cost, then, this is the same as 
breadth first search. Yes or no? If all operators have unit costs, then, the cost of a node is 
the minimum depth at which it can be reached, right? So, you will expand it in that 
sequence. You will be expanding the nodes at a depth of 1, first, the depth of 2. We are 
going breadth first, right? And then, we have already discussed this. What happens if 
negative operator costs are allowed? 
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Can you create an example, where a node is going to come back from closed to open? 
Try to create an example where a node comes back from close to open. (Student 
speaking). I am creating a much simpler example, just to demonstrate the point. See, just 
check out this one. Do you think that this is going to work? Let us see. We will start with 
1, right? When we expand this, we will have 2 with a cost of 10 and 3 with a cost of 20, 
right? And then when we expand 2, we will get- okay, let me increase this cost; increase 
it to something like 15, right? So, when we expand 2, next thing that we are going to have 
is, we will have 3 with a cost of 20 here, and we will have 4 with a cost of 12, right?  
 
So, what do we have in open? What do we have in closed? In closed- this is open. In 
closed, we have 1 with cost of 0 and now we have put 2 with a cost of 10. Next, we are 
going to pick up 4 with a cost of 12 and that is going to give us 3 with a cost of 20 and 5 
with a cost of- how much?- 27, right? Even if this is a goal, we cannot pick it up right 



now. So, we will pick up 3 with a cost of 20. We will have 3 with a cost of 20, and that is 
going to give us 4. We will have 5 with a cost of 27 and now we have created 4 with a 
cost of 20 minus 15. So, 5. Now, it is in closed, but we have reached it with a lesser cost. 
We will bring it back into open with a cost of 5, right, and then, we will expand we 
expand this node, okay? This is now 4 with a cost of 5, will come back here after the 
expansion. And what are we going to have here? We are going to have 5 with a cost of 20 
and then when we pick this up, we have discovered the least cost path to the goal, which 
is of cost 20, along this path, right? 
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Now, let us- okay. Now, we are going to study another algorithm, which also is very 
useful. This is called branch and bound- least- or, in other words, what we will study here 
is again another family of algorithms, called branch and bound. In branch and bound, 
what we are going to have is, we will start by knowing an upper bound on the solution 
cost, right, and we are going to proceed something like: we can proceed depth first. We 
will proceed depth first, find out one goal and whenever we find out one goal, we still do 
not know that this is the least cost goal. But we can use this as an upper bound, to prune 
out other parts of the search space, right?  
 
In other words, what we are going to do is, start with some bound. Let us call it, say c hat. 
Say this is the bound that we start with, and then, I start doing a depth first traversal from 
along the state space. I continue, until I reach a state where the cost exceeds c hat. 
Whenever that happens, I backtrack and then try some other operators, right? In this way, 
I am going to follow the cut off point of c hat, right, until I find, along some path- I reach 
a goal. Suppose I find a goal and let us say that this goal has cost of c1. Then, what I am 
going to do is, I am going to replace c hat by c1, and now continue the search with c1 as 
cut off. So, any path which costs more than c1 will be pruned. I will not visit any further. 
I will backtrack until I find another goal which, say, has cost c2. Then my bound will 
become c2 and I will again do a depth first traversal with the new frontier as c2, right? 



  
So, c1, c2, c3- like that, I will progressively refine my upper bound, until I am finished 
with the entire search space. As long as I am not finished with the entire search space, I 
cannot say that there is no better cost. When I have finished searching the entire search 
space with these bounds, then, my current bound gives me the cost of the minimum cost 
solution. Is it clear?  Will you be able to write a program for depth first branch and 
bound? Not difficult, recursively write the thing. Only, at every step, you check whether 
the current bound has been exceeded or not. Suppose you are asked to write the traveling 
salesperson problem using depth first branch and bound. You should be able to write it. 
You start with one city, then, recursively traverse all the remaining cities. And when you 
have first found the first tour, take any tour and you just find the first tour. Then, that tour 
becomes your upper bound, right?  
 
There are, However, the performance of branch and bound will depend, to a large extent, 
on the first upper bounds that you derive. See, this complexity of whole thing will depend 
on how quickly you are able to find out a goal whose cost is merely as close as the 
optimal goal. If you can quickly find that, then you have a tight upper bound and then 
your search complexity will be less, right? 
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So, to do that, there are different heuristics. There are heuristics which will- or greedy 
algorithms, which will give you a pretty close approximation of the cost. What people do 
is, they first apply a greedy approximation algorithm, get a reasonably tight upper bound 
on the solution cost; then, they use that solution cost as the upper bound for doing depth 
first branch algorithm. So, if you cast branch and bound in the same framework as we 
have done so far, then this is what we are doing. We are maintaining this cost C*, right? 
This C* is the bound, so initially, if you do not have any estimate, then you treat C* as 
infinity. Then, when open is empty, then return C*. As I said, that you have to exhaust 



the search space; you have to finish off all states in the search space and only then, you 
can terminate.  
 
So, we will return C*, or the current cost, when we find that open is empty, right? 
Otherwise, we just move as previously: we select a state n from open and save it in 
closed. Then here, the terminate step is different. What we do here is, if we find that n 
belongs to g, which means n is a goal, and the current cost that we have found of n is less 
than C*, That means we have found a better goal; we have found a goal having lesser 
cost. Then we update C* to this new goal cost and then go to step 2, which means that we 
again keep on exploring, right, but so far, we have not used the bound C* to prune 
anything. 
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Let us see what we do in expand. This part is clear, right? Let us see what we do in 
expand. In expand, what we do is: we check whether the cost cn is less than C*. If c n is 
not less than C*, then there is no point in generating the successors of n, because you are 
not going to get a better cost goal than this, right, assuming that all costs are positive. 
Then, for each successor m, we do exactly as before: that if this happens, this happens. 
Finally, we go back to step 2. So, it is the same as above, except that we will expand a 
node, only if we find that it has a promise of giving us a better goal.  
 
So, if its cost has already exceeded, or has equaled the cost of C*, then, there is no point 
exploring it further. And we will just- but if you have negative edge costs- then, this will 
not work, because you will not be able to prune it. You will not be able to prune it, 
because you can still have some node which has better cost, better goal cost than this. 
Yes. Therefore, in those cases, we will not be able to use this branch and bound. At least 
this kind of branch and bound. There are other algorithms, however, but this basic branch 
and bound we cannot use. 
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Now, can you tell us that what makes us choose between the algorithms that we have 
studied so far? We have studied basic DFS, BFS, then uniform cost search. We just 
searched like in Dijkstra’s and we have also studied branch and bound, depth first branch 
and bound. Which do you think will work best in a for a problem which has a large state 
space? Okay. So, there are several things that we need to consider: one is, we need to 
consider the amount of branching that we have. That is one factor. There are some state 
spaces which are shallow, but which have a lot of breadth. If you take the travelling 
salesman problem, say, if you take something like fifty cities, the depth is only fifty and 
that is not much. But, if you look at the size of the state space- because, from every city 
from the start city, you have 49 different options.  
 
From the second level you have, right. It grows in a sort of factorial way. That is why, it 
is not it is the breadth that you have to contain. If you try something like BSBB, then it is 
more likely to work nicely, because if you get a reasonably tight upper bound- and we 
will see some heuristics for doing that- then you can work in a recursive way. Your space 
requirement will be less. You do not have to store the breadth, because you are going 
depth first, right? So, if you use DSBB or if you use iterative deepening also- will 
iterative deepening be good for DSB? Yes or no? You remember iterative deepening? We 
studied in the last class. What we are doing is, we are progressively doing DFS with 
increasing bound. See, the problem here is that all your solutions are at the same depth, 
so there is no point in doing iterative deepening here. 
 
Depth first branch and bound will work, because in many tours, we will be able to prune 
off early, because the cost already exists there, right? If you do something like breadth 
first search, the amount of branching that we will have will kill you. On the other hand, 
there are state spaces where the depth is pretty large, but the breadth is not much. That 
will happen if there are many- if you have state spaces, where you keep coming back to 
the same set of states along different paths. It goes like this: you start with a set of states, 



then, it just grows a little bit and then again converges to some state, and again grows a 
little bit and converges to some state. 
  
You have state spaces like that, then the branching factor is not much, but it can go up to 
a long depth, right? There, you may have a goal which is pretty close to the start state and 
if you go depth first, you will be doing a lot of work, right? As we do some problems in 
the lab, which we will do from in another couple of classes, I will give some assignments 
to work out in the lab. You can see for yourself by characterizing these things out that 
what works best. So, in this, let us first just move. I will introduce one or 2 more concepts 
and then close this particular lecture. What we are going to leave off with this lecture 
with, is the notion of heuristics. Now, what is a heuristic function? Heuristics are domain 
specific knowledge, to the estimate the quality or potential of partial solutions.  
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What we are expecting here is that, when we are in a particular state of the state space, 
and suppose we know what the goals are, that we want to reach. Then the heuristic 
function at a state s, will be a function- let us call it hs. It is going to give us an estimate 
of the cost of going from s to a goal. it is We do not know exactly where the goal is, but it 
could be at any depth, anywhere. But this gives us an estimate of the cost of reaching the 
goal, right? So, this estimate can be an underestimate, it can be an overestimate, right? 
We will see that in the cases where this is an underestimate, we have a family of 
algorithms, which will work pretty nicely. And then we will see that if the heuristics 
overestimate, then the same algorithms can perform well under certain circumstances and 
in other cases, it may not terminate at all. So, in the next lecture, I will start introducing 
the notion of heuristics. 
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I will also talk about the heuristics used in certain known problems and then, we will see 
how algorithms can utilize these heuristics to solve the problem in a better way. 
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Okay, so we will start the section on informed state space search. In informed state space 
search- slides please. So, what we have here is, when we talk about state space search, we 
talk about the search space which is in the form of a set of states and set of state transition 
operators.  Now, when we have informed state space search, it means that we have 
additional information indicating the proximity of the goal, from each state. So, as I just 
outlined in the previous lecture, the notion of heuristics is as follows: that you have 



heuristics that use domain specific information to estimate the quality or potential of 
partial solutions, so that you know- that if I have if the current state is the partial solution, 
then I know what is the potential of growing this into a full solution; what is the 
additional cost that I will require for doing that? Let us start few examples. The one of 
most common heuristics for the 8 puzzle is the Manhattan distance heuristics. 
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Now, you remember the 8 puzzle? Where you have all the tiles- the 8 tiles- arranged in a 
3 by 3 square, and we have to slide the tiles to bring it to some configuration? To see the 
Manhattan mode heuristics for this problem, let us say that the tiles are like this that I 
have, and I want to reach the configuration- my goal configuration- which is known, 
again. Now, the heuristic- the Manhattan mode heuristic says that find for every tile, the 
Manhattan distance from its current position to its final position. Manhattan distance is a 
commonly used term, which says that it is the distance computed in terms of the distance 
on the x axis plus the distance on the y axis. It comes from the fact that Manhattan 
apparently has all roads which are either east to west or north to south. 
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So, to travel from place c to place b, the total distance that you have to travel is your 
distance northwards plus your distance eastwards or westwards, right? You know why? 
Because suppose there is some state. This is our start state. And there is some state here; 
some state n. And the cost of n the cost of n is less than C*, and if your algorithm a does 
not expand n, then I am going to give the algorithm a. Another instance of the problem 
where the entire state space will be similar, except that just below n, I will add a goal, 
right, and whose cost will be say cn, or just cn plus some epsilon, where cn plus epsilon 
is also less than C*.  
 
I can always find such an epsilon and then, because nothing else has changed in the state 
space, the algorithm a will be unable to find this goal, because it is not expanding n. And 
if it does not expand n, then it will never discover this goal and therefore, it will give you 
a sub-optimal solution. It will still give you C*, but you have a goal which has better cost. 
Now, is this analysis clear? Once again, okay? My claim is that if cn is less than C* and 
C* is, what, optimal cost, then, n must be expanded. This is my claim. Then, n must be 
expanded. This is my claim. Now, how do we establish this claim? We say that, let us 
assume, that we have an algorithm a, which does not expand n, okay? Let algorithm a 
does not expand n. Then, what we can do is, we can keep the remaining state space 
identical. 
  
You do not make any change to the remaining state space, except that below n, we just 
add a goal and give it a cost which is between cn and C*. We can always do that, because 
cn is less than C*. You can have some epsilon which you add to cn, and then this edge 
cost is that epsilon, right? This goal will have cost cn plus epsilon. Now, from the point 
of view of a, nothing has changed, because the entire remaining state space is similar and 
in that scenario a was not expanding n. So, a will still not expand n, and if it does not 
expand n, then, it will not see this goal. It will not be able to see this goal unless it 
expands n. 
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The minimum cost state n from open, right? Now, if you have many states having the 
same cost, which one will we select? What we do there is, if you have many costs with 
the same cost, select the one which has minimum g value. Among those states which 
have the same f value, select the ones select the one which has minimum g value, because 
the others have already incurred a more cost in terms of g, and we do not know the 
accuracy of the heuristics, right? Okay. 
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So, with that, we will conclude this lecture. In the next lecture, I will start by analyzing 
some results of A*, and then we will study how we can create variants of A* which will 



work better than A*. A* does not work very well in practice, that is because it requires 
too much of memory. It is storing the whole of open and the whole of close, and it uses 
up too much of memory. So, it does not work well in practice, but there are variants of 
that which are used. We will study some of those in the next lecture.   


