
Artificial Intelligence 
Prof. Sudeshna Sarkar 

Department of Computer Science and Engineering 
Indian Institute of Technology, Kharagpur 

Lecture - 9 
Constraint Satisfaction Problems - 1 

 
So today we start with lecture 9. This is the first lecture on constraint satisfaction 
problems. The instructional objectives of today’s lecture are as follows:  
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Students will be introduced to the class of problems which we call constraint satisfaction 
problems. Students will learn how different types of constraints can be expressed in the 
formal manner. Students will also learn how constraint satisfaction problems can be 
modeled as search problems and they will also see how depth first search can be used 
with backtracking to solve these problem. We will also discuss how different heuristics 
can be used to make this search process more efficient. Students should be able to cast 
different types of constraint satisfaction problems as search problems in this framework.  
 
Many problems that occur in Artificial Intelligence as well as in many other areas of 
computer science are different types of constraint satisfaction problems. Many of you 
must be familiar with the satisfyability problem the 3-sat. You are given a propositional 
formula and you want to know whether this formula is satisfiable. That is, does there an 
assignment of values to the different propositions so that the formula evaluates to true?  
So satisfyability problem is a type of constraint satisfaction problem.  
 
Every variable can take exactly one value true or false and the formula must evaluate to 
true. So, if you have a formula which is a conjunction of different clauses then each of 
these different clauses must be individually true for the entire formula to be true.  
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Different types of scheduling problem like the time tabling problem, different types of 
job shop scheduling can also we looked upon as constraint satisfaction problems. There 
can be different constraints among the different jobs. For example, job one may need to 
precede job five. So the precedence relationships among the jobs imposed are constraints 
among these jobs.  
 
Other types of constraints can also be imposed. For example, in the time tabling problem 
our objective is, we are given a list of class rooms, a list of courses, a list of teachers and 
students taking the courses. Our objective is to schedule courses to time slots and to class 
rooms so that at any time slot not more than one class can be scheduled at a class room at 
a given time slot.  
 
A teacher at the same time slot cannot be teaching two courses. A student at a same time 
slot cannot be taking two courses. So these are the different types of constraints in the 
time tabling problem. There are other problems like supply chain management, the graph 
coloring problem, etc. Then there is constraint satisfaction arising in machine vision in 
the age detection walls filtering and then different types of puzzles can also be looked 
upon as constraint satisfaction problems.  
 
Many of you have worked on crossword puzzles. You are given a rectangular grid and 
you have to fill up words row wise and column wise. And there are constraints because 
several words may share a common letter. So formally a constraint satisfaction problem 
consists of a set of variables x. 
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These are the variables X. For each variable xi belonging to X the variable xi can take its 
values from a domain Di. And Di is a finite set of possible values. So we assume today 
that the domain of every variable is discrete and finite. We are also given a set of 
constraints restricting tuples of values. For example, we can have binary constraints. We 
may say that x5 and x7 cannot take the same value. So this is an example of a binary 
constraint or we can say that the value of xi must be numerically less than the value of the 
variable xj. So these are binary constraints.  
 
Unary constraint means constraints involving a single variable. We may say that xi must 
take values which are only odd integers. So we can have unary constraints, we can have 
binary constraints and we may even have constraints involving more than two variables. 
However, we will discuss constraints mainly involving two variables or binary 
constraints and we will later discuss how other types of constraints can be formulated in 
this term. So, if the constraints concern only pairs of values we have a binary constraint 
satisfaction problem. A solution to a constraint satisfaction problem is an assignment of a 
value to each of the variables xi. So each variable xi can take values from its domain Di 

and assignment of values to each of these variables which does not violate any of the 
constraints is a solution of the constraint satisfaction problem. Let us look at an example 
of a graph coloring problem or a map coloring problem.  
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But I think we had occasion to discuss this problem when we discussed search. Here we 
have a map which consists of four regions: V1 V2 V3 and V4 and we are given three 
colors. Let us say the colors are red, green and blue. And we want to know, can you 
assign regions to colors such that two adjacent regions cannot have the same color. This 
problem is also called the map coloring because suppose you have a map we have 
different countries and you want to color the countries using colors such that two adjacent 
countries always have different colors. A related problem is the graph coloring problem. 
In fact a map coloring problem can be transformed to an instance of a graph coloring 
problem involving a planar graph.  
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If we look back at the previous slide we see that V1 is adjacent to V2, V3 and V4. V2 is 
adjacent to V1 and V3, V3 is adjacent to V2, V1 and V4, V4 is adjacent to V1 and V3. 
We can model V1 V2 V3 V4 as the vertices of the graph and we have an edge between 
two nodes if V1 is adjacent to V2. So we have an instance of a graph coloring problem 
where we want to assign colors to the vertices of the graph such that two adjacent vertices 
to not have the same color. So, we have a variable for each node and the domain for each 
of the variables is the colors red, green and blue.  
 
V1 can be red, green or blue, V2 can be red, green or blue, V3 can be red, green or blue, 
V4 can be red, green or blue and so on. So there is a constraint on each edge. All 
constraints are of the form that the color on one end point of this edge should be different 
from the color of the other end point of this edge. So these two nodes must be V1 and V4 
and they must have different colors.  
 
V1 and V2 must have different colors, V2 and V4 must have different colors and so on. 
The solution to this problem gives the coloring of the vertices. This is an example of a 
binary CSP. Similarly, the satisfyability problem of propositional formula can be also 
looked upon as a constraint satisfaction problem. So, in the satisfyability problem in the 
formula we have different variables corresponding to each of these variables we have a 
variable in the CSP problem.  
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The domain of each of the variables is either true or false. A proposition can be either 
true or false. The constraint corresponds to each clause. We disallow tuples which 
falsifies the clause. So, if we have a clause x1 or x2 bar we cannot have the situation 
where x1 is 0 and x2 is 1. If x1 is 0 and x2 is 1 then this clause will not be satisfyable. 
Therefore if you have a conjunction of clauses the entire conjunction cannot be satisfied. 
So, here the constraints are, for each clause we must disallow those tuples such that the 
clause is falsified. We have a clause x1 bar or x4 or x5. We cannot have a situation that x1 



is true, x4 is false and x5 is false. So, Sat is an example of a constraint satisfaction 
problem. However, the general satisfyability problem is not a binary CSP. A clause may 
have k variables so the constraints involved are a set of k variables. Thirdly let us look at 
the n queens problem.  
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We are given an 8 cross 8 chess board and we have to place 8 queens in the chess board 
so that no 2 queens attack each other. So we can formulate this problem in this way. We 
have eight variables representing the positions of the 8 queens. Here 2 queens cannot be 
in the same row so let us say that x1 is the queen in the first row, x2 is the queen in the 
second row and x3 is the queen in the third row. There has to be exactly 1 queen per row. 
So let x1 demote the position of the queen that is the column position of the queen in the 
first row. So x2 denotes the column position of the second queen in the second row. Now, 
because no 2 queens attack each other the domain of xi is 1 2 3 4 up to 8 for each position 
in the row.  
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The constraints are, for any different i and j xi should not be equal to xj because we 
cannot have 2 queens in the same column so each of these variables must have a different 
value. Also 2 queens cannot be in the same column. So xi minus xj cannot be equal to i 
minus j or and xj minus xi cannot be equal to i minus j that is, the queens cannot be either 
in the right diagonal or in the left diagonal. So these are the constraints for the n queens 
problem or its variation the 8 queens problem. And this is the same statement we have 
seen.   
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So a CSP to summarize consists of a set of variables x consisting of x1 x2 up to xn. Each 
variable xi has a domain Di from which it takes values. And D is a finite set of possible 
values. We have a set of constraints restricting the tuples of values. And a solution is an 
assignment of a value in Di to each variable xi such that every constraint is satisfied. So 
let us formally define what we mean by constraints.  
 
A constraint Cijk . . involves the variables xi xj xk etc. So constraint can involve a single 
variable, it is called the unary constraint and unary constraint basically restricts the 
domain. We can have binary constraints which involve two variables, ternary constraints 
involving three variables and k-ary constraints in general involving k variables.  
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It is any subset of combinations of values from the domains of these variables xi xj xk 
which are allowed. That is, this constraint specifies that a subset of the Cartesian product 
of di dj and dk are allowed sets. There are different ways in which we can express such 
constraints. We can specify as to which are the valid tuples.  
 
For example, we can say that suppose d1 and d2 are same and they are 1, 2 and 3 then let 
us say the valid tuples are (1,2) (1,3) (2,1) (2,3) (3,1) (3,2) and the rest of the tuples are 
invalid. Or we can specify constraints like x1 is not equal to x2 or constraints like x1 less 
than x2 or x1 equal to x2 plus 1 and so on. So there are different ways in which 
constraints can be expressed. Another example is crypt arithmetic which is a type of 
puzzle. We have every letter standing for a digit and every letter stands for a different 

igit. d
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We have to find an assignment of letters to digits such that a given arithmetic formula is 

nment of values to each of these variables such that 
is arithmetic expression is correct?  
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correct. For example, we have this formula:  
Send plus more is equal to money and the variables are D, E, M, N, O, R, S, Y and the 
domains of these variables are, or rather domains for D, E, M, N, O, R, S, Y are the digits 
from 0 to 9. And S and M cannot be 0 so S and M must have values from 1 to 9 and each 
of these variables must have different values. We want to know if there is a solution to 
this problem. That is, is there an assig
th
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So how do we specify the constraint for this crypt arithmetic problem?  
We can write one long constraint for the sum. It is 1000 star S plus 100 star E plus 10 star 
N plus D plus 1000 star M plus 100 star O plus 10 star R plus E is equal to 10000 star M 
plus 1000 star O plus 100 star N plus 10 star plus Y. So this is the sum constraint but 

ere are also other constraints.  
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We have to specify that S is not equal to E, S is not equal to O, S is not equal to R, S is 
not equal N, M is not equal to 1 and so on. Or we can express it as a single constraint on 
all the variables. We can say that the values of each of these variables must be different 
by saying all different D, E, M, N, O, R, S, Y. These two constraints the sum constraint 
and this constraint together precisely characterize this problem. Now let us see that 
onstraint satisfaction problems can be looked upon as search problems.  c
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It is a kind of search in which a state is not indivisible. We will look at the formulation. A 
state consists of assignments of values to the different variables. So state is factorized 
into the states of the different variables inside the state. The search involves finding an 
assignment of values to these variables, finding that state which corresponds to a 
particular assignment of values to these variables. So these constraints provide the 
structure to the state space. And we will discuss about backtracking algorithms which can 
be very well done with depth first search and that can work well for these problems. And 
we can use other methods along with backtracking including constraint propagation, 
ariable ordering and different preprocessing steps to make this search more efficient.  
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Now let us see how CSP can be looked upon as a search problem. The states are the 
nodes in the graph, the operators are the arcs between the nodes and then we have to 
know what the initial state is and what the goal states are. For example, suppose we take 
this problem the n queens problem for n is equal to 4 and for this problem the initial state 
is the state where none of the variables are assigned values. That is, we have not placed 
any queens on the board.  
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The neighbors are the cases where the first queen is assigned. The first queen can be 
assigned either here or here or here or here or here. So let us say the first queen 
corresponds to the first column. The first queen can be assigned 1 or 2 or 3 or 4. If the 
first queen is assigned 1 the second queen cannot be assigned 1 because the constraint is 
violated, 2 queens cannot be in the same row. The first queen cannot be assigned 2 



because the diagonal constraints will be violated. If the first queen is in 1 the second 
queen can be in 3 or 4, if the second queen is in 3 the third queen cannot be in 1 or 3. It 
cannot be in 2 or 4 because diagonals constraints will be violated.  
 
So, after we have placed the first queen here and the second queen here we cannot place 
the third queen anywhere. If we cannot place the third queen anywhere wherever we 

lace the fourth queen the problem cannot be satisfied because the constraint of third 

to see whether we can place the fourth queen 
nywhere. If we place the third queen in 2 then the fourth queen cannot be placed in 1 or 

 prune search below this node. Now, when you prune search 
elow this node we have to backtrack and find out the next place where we should 

explore the state space. So, as you can see the nature of this search space is such that we 
can start from the root node and we can do a depth first search. And whenever we 
generate successors we only generate those successors that do not violate any constraints. 
If a constraint is violated at a node then further assignment of values to the other 
variables cannot help resolve that constraint. So, exploring that region of the search tree 
is fruitless. So, if a constraint is violated we can abandon that path.  
 

p
queen is violated. So this path is fruitless so we can terminate search below this. Then we 
can look at this sibling that the first queen is in first row and the second queen is in fourth 
row.  
 
Now the third queen can be placed neither in 1 nor in 4 nor in 3 but only in 2. So you 
place the third queen in 3 and then we have 
a
2 or 3 or 4. So we have to
b

If we reach a node so that we cannot place some variable then we cannot assign any value 
to the one of the variables, then we can prune that search portion of the search tree and 
we backtrack to our next choice point. So depth first search with backtracking seems to 
be a good solution to such search problems. Binary CSPs are the special types of 
constraint satisfaction problem which involve constraints between two variables. Suppose 
this is an assignment of values to variables  
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Suppose xi is assigned aI, xj is assigned aj and they are consistent with a set of variables 

m to xn if and only if there exists a tuple of values am up to an such that xi aI, xi 

ent of values to the variables. This partial assignment can be explored 
rther only if there is a full assignment of values to all the variables which includes this 

ch satisfies all the constraints.  

We will use this property later to see where we can prune the search space even further. 
So, when we have a constraint satisfaction problem we can look upon this as a search 
problem and depth first search seems to be a very good technique to solve such search 
problems. But if you are able to propagate constraints then we can improve the efficiency 
of the search. Let us discuss different ways of constraint propagation including forward 
checking and maintenance of arc consistency.  
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assigned to aI, xj assigned to aj, xm assigned to am, xn assigned to an this whole thing is 
consistent. In a search tree a particular node in the middle of the search tree denotes a 
partial assignm
fu
partial assignment and whi
 



 
 
So the backtracking framework we will use for constraint satisfaction problem basically 
involves that consistency check is performed in the order in which the variables are 
instantiated.  
 

efer Slide Time: 28:09) (R
 

 
 
Whenever we instantiate a variable we check its consistency with respect to the variables 
we have already assigned. If the consistency check fails at a particular point we look at 
the next possible value of the current variable. If there are no more values for the 

ariables which are cov nsistent with the previous assignments then we backtrack to the 
most recent choice point. So this is the sense of chronological backtracking which is the 
basic framework of search for CSPs. Let us look at the depth first search algorithm for 
solving CSPs.  
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The initial state is the empty assignment. That is, none of the variables are assigned. All 
variables are unassigned. In the goal state all the variables will be assigned values from 
their domain and all the constraints must be satisfied. The successor function assigns a 
value to any variable which is as yet unassigned such that this assignment does not 
violate any constraints with respect to what has already been assigned. All CSP search 
lgorithms generate successors by considering possible assignments for only a single 

e values at once 
e pick one of the variables and for that variable we try to assign the different possible 

 we model the search tree for state space.  

a
variable at each node in the search tree.  
 
When we start from the initial node where all the variables are unassigned there are n 
candidate variables. Each of them can take different values. So there are potentially many 
successors of the first node. So what we do is, instead of trying all thes
w
values and that is how
 
In the goal test when the assignment is complete and by the way in which we have 
assigned we have to make sure that no constraints are violated. So, if we have able to get 
a complete assignment to all the variables so that no constraints are violated we have 
reached a goal state. If there are n variables typically if we get to a node which is at depth 
n then we have found a solution to the CSP. Now in constraint satisfaction problem there 
may be different objectives. Your objective may be to find one solution any one solution 
or all solutions.  
 
If you want to find all solutions you must explore the entire tree until except those where 
you have pruned the search. If you want to find only one solution you stop as soon as you 
get a solution. If there is not solution you have to again explore the entire tree to rule out 
all possibilities.  
 



What is the path cost?  
Actually path cost is not very important. So we can say that the cost is 1 for every step so 
assigning n variables will take a cost of one.  
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o this algorithm can be recursively formed because we are basically using depth first 

 select the next one in the order or we can select smart key. But we select 
ne unassigned variable and for each value in the domain of the variable. Assuming that 

t order we 

 problem for backtracking 
hich solves the csp.  
 we want to consider the efficiency of the csp problem there are various things that we 
an consider. Among the unassigned variables so far which variable should we pick next? 

S
search we can have a recursive formulation of this algorithm. So this is a simple recursive 
function which captures this basic algorithm. Recurse (assignment, csp). If the 
assignment is complete, that is all variables are assigned values then we return the current 
assignment as the solution. Otherwise we select an unassigned variable.  
 
How do we select?  
We can simply
o
we order the possible values of the variable can be taken in a particular order. One by one 
we consider the different values or we can be smarter and we can decide in wha
should test the values so that our search effort is minimized. In any case for a given order 
we take up values one by one and if that assignment of that value to this variable is 
consistent we add this variable value tuple to the assignment and we call recurse again 
with this new assignment.  
 
If recurse succeeds then we return the assignment. Otherwise if this recurse does not 
succeed we remove this assignment and try the next choice. If we have not been able to 
succeed then we return failure. If none of these assignments are successful then we return 
failure. This is a simple recursive structure of the basic dfs
w
If
c



And then, for a given choice of variable, in what order the values of the variables should 
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be tried?  

 
 
Secondly, how does the assignment to the current variable influence the assignment for 
other unassigned variables. So, if the current variable is given a certain assignment that 
will affect the assignment of values to the other variables because the constraints that are 
imposed by this current assignment is carried over to the other variables which converts 

e constraints other variables including the currently unassigned variables. So we may 

e have discussed a heuristic search, different types of heuristics in csp, we do 
ot normally use heuristics. Instead we try to see how these issues can be tackled and 
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have to consider this effect in deciding which variable or which variable value pair we 
will try next.  
 
Thirdly, when a path fails, suppose at a particular point there is a failure there’s an 
inconsistency can the search avoid repeating this failure in subsequent paths?  
These issues need to be discussed to see how we can try to make this search more 
efficient. W
n
these issues have the effect of reducing of improving search efficiency.  
 
First let us take up the issue of variable ordering. When we want to select the next 
unassigned variable we can use the following heuristic which is called the minimum 
remaining value heuristic or which is also called the most constrained variable heuristic 
which states choose the variable with the fewest legal values.  
 
 
 
 
(R



 
 
Every variable has a domain to start with. When we assign values to some of the 
variables the domain of the other variables get restricted. Suppose V1 and V2 are 
djacent in the graph coloring problem, if I assign V1 to red V2 could initially be either a

red or green or blue but if V1 is assigned red and V2 is adjacent to V1 then V2 cannot be 
red so V2 must be either green or blue. If V2 is also adjacent to V3 and V3 is green then 
V2 also cannot be green so V2 cannot be red or green it has to be only blue if at all. 
Therefore the domain of V2 has to be restricted.  
 
After we have made partial assignment to some of the variables we look at the remaining 
variables and their valid domain with respect to the current assignment. We choose that 
variable whose domain is smallest. Suppose V2 has only one value in its domain blue so 
we can just assign V2 to blue and that is the only choice. So we choose the variable 
which has the least number of legal values. In the beginning suppose when we have not 
assigned any variable to any value we can use another heuristic which is called the degree 
heuristic.  
 
In the degree heuristic we select the variable which is involved in the largest number of 
onstraints with other unassigned variables. We select variables one by one but finally we 
ave to select all the variables. If we choose to select a variable so that it constrains 
verely the domains of the other unassigned variables it can help to reduce future search. 
he degree heuristic is useful especially in the beginning or in the case where the 
inimum remaining value heuristic is a very good heuristic and we usually try it first. 
ut we can use the degree heuristic to resolve ties between two variables which have the 
me importance according to the MRV heuristic. So minimum remaining value heuristic 

r the most constrained variable heuristic is a heuristic which is used for choosing the 
ext variable to a sign and it is very effective.  

 you run different instances of constraint satisfaction problem you can test the 
ffectiveness of this heuristic. The degree heuristic is also useful and is often used to 

ed which variable to try let us consider the order in which 

c
h
se
T
m
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If
e
break ties. Once we have pick



we will consider the values we assign to the heuristics. Here the heuristic used is called 
e least constraining value heuristic.  

 
We prefer to first try that value that rules out the fewest choices for the neighboring 
variables in the constraint graph. So we will choose the values one by one. First time 
when we choose a value and suppose our objective is to find one solution to the csp 
problem then we will be very happy if we quickly reach a solution because after that we 
can stop our search.  
 
Of course in those cases where we want all the solutions or in those cases where a 
solution does not exist we have to look through the entire search space. The order in 
which we choose the values do not matter because we have to go through the entire 
search space. But if we interested in only one or a few satisfying solutions then we try to 
choose that value for which there is a greater hope that a solution will be found. So we 
choose that value which is least constraint. That is which rules out the fewest choices for 
the remaining variables or at least the neighboring variables in the constraint graph.  
 

s we do depth first search and whenever we find an 
sistencies arise because the current assignment of 

e with the previous assignments. In those cases we backtrack. 
 is possible to take this effort one step further.  

 
Whenever we assign a value to a variable we propagate constraints to the future variables 
to the unassigned variables. And then if we notice the other variables as a result of 
current assignment there is a variable whose domain becomes null. That means there is 
another variable which is not consistent with the current partial assignment. If we can 
discover that we can terminate our search. This can be achieved by various types of 
constraint propagation. There are many algorithms which do constraint propagation to 
different degrees.  
 
 
 
 
 
 
 

th

Secondly, for csp problem
inconsistency we backtrack. Incon
variable value does not agre
It
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We will discuss briefly two types of algorithms forward checking and arc consistency. 
Forward checking is th

hen I assign a value to a variab
e simplest type of constraint propagation. The idea is simple. 

le and if we find that it is inconsistent with some other W
variable, another variable that cannot take any valid value for the current assignment then 
we can terminate the search at this point. This is the idea of the algorithm. So whenever 
we assign a value to a variable we use that assignment to restrict the domains of the 
unassigned variables. And if we find that the domain of some other future variable 
becomes null we terminate the search at this point. This is the idea of forward checking.  
 
And how do we carry out forward checking?  



With every variable we keep its current value domain. So whenever we assign a variable 
to a value we update the domains of the other variables. So we use a data structure. The 
ata structure is, for every variable xi we maintain its current domain cdi. Initially cdi is 

e v we remove xi is equal to u from the domain of xi if 
. My 

s in its domain. But if xi is equal to u and xj is equal to v violates some 
onstraints then we remove u from the domain of xi. And in this way if we find that a 

d
equal to the whole domain of the variable, cdi is equal to Di to start with. When we set 
variable xj equal to particular valu
some constraint is not consistent with both xj is equal to v and xi is equal to u
current assignment is xj is equal to v. Therefore xi is an unassigned variable and u is one 
of the value
c
particular variable xi has its current domain cdi to be null then we can stop search beyond 
the current point.  
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Now let us briefly discuss how constraint propagation is used in the graph coloring 
problem. So in a graph coloring problem we start with all the nodes unassigned then we 
ick a node and assign it a color. Assign it possible colors from what its current domain 

e remove the color.  

uppose we have colored the current node red we remove red from the current domain of 
ll its uninstantiated neighbors. By this process if any of these neighbor domains become 
mpty then we backtrack. Now for each n in these neighbors if n previously had two or 
ore available colors but now has only one color. Suppose there is a neighbor, earlier its 

omain cdi had two or more colors but as a result of this constraint propagation xi has 
nly one valid color left on the domain, now I can use this color to propagate constraints 
rther. So I can take n assign n that color because that is the only color n can be assigned 

nd propagate this constraint so that its neighbors get affected. So we call propagate color 
c. So this is the code for propagating constraints for the graph coloring problem.  

p
is. After we instantiate a node with a color we propagate the color. And how do we 
propagate the color?  
W
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Whenever we assign a node the color we call propagate color node color. And propagate 
color node color has three steps:  
1) Remove color from all of available lists of the uninstantiated neighbors of node  
2) If any of these neighbors gets the empty set then this is an inconsistent situation so we 
backtrack.  
 
Now we look at these neighbors. Earlier its current domain had two or more colors but as 
a result of this propagation currently that node n has only one color c in its current 
domain then we call propagate color nc. So this is the algorithm for propagating 
constraints in the graph coloring problem. Let us look at one more example of forward 
checking.  
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We have variables x and y. The domains of x and y are 1, 2, 3, 4, 5. The constraint is that 
x is less than y minus 1. So initially the current domain of both x and y are 1, 2, 3, 4, 5.  
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Suppose we set x is equal to 2 then y has to be greater than equal to x plus 1 so y can only 
be either 4 or 5 so cDy becomes 4 or 5. Now, if we set x is equal to 4 then cDy becomes 
null because there is no value in its domain. So, if we set x is equal to 4 we have to retract 
this choice and then backtrack.  
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I will end this lecture by setting two questions for you to consider answering.  
1) Give precise formulations for the following problem as a constraint satisfaction 
problem.  
 
This is the class time tabling problem. You are given a situation where there are a number 
of teachers and given number of classrooms. You have a list of courses that have to be 



offered and you are also given a list of time slots for these courses. Each teacher has a set 
of classes which the teacher can teach. Now your objective is to schedule the classes, 
schedule the courses to time slots, to teachers, to class rooms and so on. So you have to 
consider the different constraints in this problem and pose it as a constraint satisfaction 
problem and indicate how you will go about solving such problems.  
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2) You are given the following crypt arithmetic problem:  
SEND plus MORE is equal to MONEY, and your job is to assign digits to s e n d to each 
of these characters so that each of these characters corresponds to unique digits m and s 
cannot be 0 and this arithmetic relation is satisfied. We have already seen how we can 
pose this as a constraint satisfaction problem. Your job is, firstly to solve this problem on 
paper using backtracking and for a particular ordering of the variables and values. You 
choose a particular ordering of the variables. And given with that particular ordering you 
draw the dfs tree and indicate where backtracking will occur.  
 
The second part to this question, you have to do this problem again but this time you have 
to use the minimum remaining variable heuristic to choose which variable you should 
consider next. So use the minimum remaining variable heuristic and check if it has any 
effect on pruning of the search tree for this particular problem.  
 
The third part to this question, you use forward checking of the type that we discussed 
today. We use constraint propagation or forward checking on this problem and see how 
you can work on it.  
  


