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Today we have the seventh lecture of the course Artificial Intelligence. In today’s lecture 
we will talk about two player search. In the last few lectures we have looked at different 
state space formulations of some types of problems which were formulated as search 
problems. But in all these cases we assumed that there is one agent or one machine who 
is trying to reach the goal from the start position.  
 
In today’s class we will consider situations where there is more than one agent. In 
particular we will talk about two agent situations. In fact a specialized two agent 
situations where there are two competing players so that the gain of one player is the loss 
of the other player. So we will see that such problems can be formulated as different 
kinds of search problems which have different characteristics than the single agent search 
problems we considered earlier. But before we go on to today’s lecture I would like to 
discuss the questions of the previous two lectures.  
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First let me come to the questions from lecture 5.  
Question number one:  
Suppose you have the following search space this search space will be given to you in the 
form of a table you were supposed to draw the state space of this problem, assume that 
the initial state is A and the goal state is G and you have to work out a few search 
strategies and show the search tree and what sort of path the search generates from the 
initial path to the goal.  
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This table gives you a representation of the state transition of the system. There are states 
A B C D E F G and these are the edges AB, AC, BD, BE, CC, CD, CF, DC, DE, EG and 
FG and in this column we have the costs of the different edges. In addition, for heuristic 
search we will need to have an estimate of the cost at a particular state. So the estimate at 
A is equal to 8 at B is equal to 8 at C is equal to 6, at D is equal to 5 at E is equal to 1 at F 
is equal to 4 and at G which is goal state the estimate is 0.  
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Now given this state transition diagram we have to work out three search strategies:  
1) Uniform cost search  



2) Greedy search and  
3) A star search.  
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And you have to show at each step of the search algorithm the node which is being 
expanded and the content of fringe. Also, you have to find out the eventual solution 
discovered by the specific search algorithm and the solution cost that is achieved. Now 
let us go back to this table representing the transition. So A to B we have an edge with a 
cost of 4. This is a graphical representation of the same table. A to B there is an edge with 
cost 4; A to C there is an edge with cost 1, B to D has cost 3, B to E has cost 8, C to C has 
cost 0, C to D has cost 2, then C to F has cost 6, D to C has cost 2, D to E has cost 4, E to 
G has 2 and F to G has cost 8. This is a representation of the state space for this problem. 
Now let us quickly look at how uniform cost search works on this problem. In uniform 
cost search we start from the initial state and we expand nodes in the order of their 
distance from the initial state. So, from the state A we can reach the nodes C and B.  
 
Initially we will put the node A in the fringe or in the open list. This will be the initial 
content of fringe. At the next instance we will remove this node from the fringe and 
expand it. So A will be the first node that gets expanded and as a result we will get its 
two children B and C which we will put in fringe. B has a cost of 4 and c has a cost of 1 
so C and B will be put in fringe, C with a cost of 1 and B with a cost of 4.  
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Now at the next step we remove the lowest cost node from fringe which happens to be C. 
So we remove C from fringe expand it and then find the children of C which happened to 
be D, F and C itself. Now C has already been expanded so if we keep track of it then we 
will not put C in the list instead we will generate D and F. D will have a cost of 1 plus 2 
is equal to 3 and F will have a cost of 7. So we will have D with a cost of 3, B with a cost 
of 4 and F with a cost of 7. Next we will again remove the lowest cost node and expand it 
which happens to be D. After that we will find the children of D which happen to be C 
and E out of which C is in the closed list if we do maintain a closed list but if we do not 
we will put it in there. 
 
Let me not put in C right now. Let me put in E so what we get is B, E and F. 
D has a cost of 3 plus 4 is equal to 7, so E will have a cost of 7. Then B is already there 
with a cost of 4 and F is there with a cost of 7. Now out of these three nodes which are in 
the fringe at this instant we will remove B which is the smallest cost. And then we will 
find the children which happen to be E and D out of which E is already there in the fringe 
and the current cost of E through B would be 4 plus 8 is equal to 12 and E is already there 
in fringe with a cost of 7. So E will not go into fringe but D will and D will have a cost of 
4 plus 3 is equal to 7. So, in the fringe we will have D with a cost of 7, E with a cost of 7 
and F with a cost of 7. Now we have to remove the lowest cost node in fact all these three 
nodes have the same cost and we can remove any one of them.  
 
Let us say that we remove D but D has already been expanded so we will not put D and 
then we will remove E. If we remove E we will have F left in fringe and E has the child 
G. Now G will have a cost of 9 and F is there in fringe with a cost of 7. Next we will 
expand F and F has no new child. F has another child G which will have a cost of 15 so 
we will not put it in here instead we will keep G with original cost of nine and the next 
step G is the only node in fringe so we will expand it and G happens to be the goal so we 
are done.  



Therefore in this search we have expanded the following nodes A C D B E F G. Then if 
we broke this tie in other way rather if we had expanded F first then we might have got 
some other sequence of nodes. But once we get the goal we can retrace and find the path. 
So it happens that in this case G will have the parent as E, E will have its parent as D, D 
will have its parent as C and C will have its parent as A. So the path found would be A C 
D E and this path has a cost of 9 so uniform cost search has found an optimum solution 
and this optimum solution has a cost of 9.  
 
Let us now go and see what happens if we use greedy search for this problem. In greedy 
search we start from A and find the node which is closest to A or rather we find the node 
which is reachable from A and whose H value is at minimum.  
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Now from A there are two nodes which are reachable B and C. B has A edge value of 8 
and C has a edge value of 6 so what we will do is that we will take C because C has a 
lower H value. Now from C the two successors are D and F. D has an H value of 5 and F 
has a H value of 4 so we expand F so we go to F. Now F has one successor which is G 
which has H value of 0 so G is expanding so we get a path A C F G which is the solution 
found by greedy search in this case.  
 
What is the cost of the solution?  
It is 1 plus 6 is equal to 7 plus 8 is equal to 15 so cost is 15. Obviously in this case the 
greedy algorithm does not give you the optimum cost path. Next we will look at A star 
search as to how A star works on the same graph. Now in A star first the fringe contains 
the single node A then A is expanded and its children C and D are generated.  
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If you remember in A star the F value of a node N is equal to its G value that is its cost 
from the initial state plus the estimate of its cost to the goal. So, for the node C the G 
value is 1 here and h value is 6 so C has a cost of 7, B has a G value of 4 and H value of 8 
so B’s cost is 12. Now C is expanded removed from open and its children are C, D and F 
and C has already been closed so D and F are put in open whose cost F value happens to 
be 8 and 11. Next D is removed from open and its children are inserted. Then E is 
removed then finally we get G and as a result we get the solution path A C D E G whose 
cost is 9 and the nodes expanded are only A C D E and G which happens to be lesser than 
the number of nodes we expanded in the case of uniform cost search on the same graph. 
Now let us look at the second question.  
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In the second question you were asked to write the algorithm for bidirectional search 
using pseudo code. Assume that each search is a breadth first search and that the forward 
and backward searches alternate expanding one node at a time.  
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This is a pseudo code. Fringe: We maintain two open lists fringe1 and fringe2. Fringe1 
contains initially the start state. It represents the search tree as we move forward from the 
start state and fringe2 is the open list of the search tree which we get while going 
backward from the goal. So while fringe1 and fringe2 are not empty both are non empty 
we first remove the first node from fringe1 let it be node. So if node is in fringe2 then we 



return the path that we get from start to node concatenated with the path we get from goal 
to node reversed. Otherwise if node is not in fringe2 we generate all successors of node 
and add the generated nodes to the back of fringe1. If we are done we go to fringe2, we 
remove the first node of fringe2 generate all successors of m and add the generated nodes 
to the back of fringe2. So this is a pseudo code for bidirectional search.  
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Third question, give the time complexity of bidirectional search when the test for 
connecting the two searches is done by comparing a newly generated state in the forward 
direction against all the states generated in the backward direction one at a time. So, in 
bidirectional search we have the start state here, we have the goal state here, we have a 
forward search from the start state, we have a backward search from the goal state until 
they meet. And when they meet we get a path from start to this node N and from goal to 
this node N and we concatenate them to get the path.  
 
Now if the tree has a branching factor of b and if these two search tree generations 
alternate these trees will meet about half way. So the depth of each of these trees would 
be d by 2. So the number of nodes in this tree is b power d by 2 and the number of nodes 
in this tree is b power d by 2 so total two times b power d by 2 is expanded. But every 
time we expand a node in the forward tree we check it against all the nodes in the 
backward tree and the number of nodes in the fringe of the backward tree is of the order 
of b power d by 2.  
 
Therefore, for every node expanded in the forward direction we spend order of b power d 
by 2 time checking it against the fringe of the backward tree. So the total time taken is 
order of b power d. But bidirectional search can be made faster if we do not check every 
node in this fringe but use some hashing scheme so that this test can be performed 
quickly. In that case we may be able to get a performance which is nearer to order b 



power d by 2 which is square root of order b power d by 2 for plain breadth first search. 
Now we move onto questions from lecture 6. 
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1) Compare IDA star with A star in terms of time and space complexity.  
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So let us assume a search tree with a uniform branching factor of b. In this case the time 
complexity of A star is b power n of IDA star is b into b power n. The space complexity 
of A star is b power n of IDA star is only b into n. This is linear. However, if the tree does 
not have a uniform branching factor this may not be true but we can see that if A star 



expands m nodes IDA star expands utmost m2 nodes. This happens if at every new 
iteration exactly one new node is expanded.  
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Question number 2; Is hill climbing guaranteed to find a solution to the n queens 
problem?  
No, hill climbing can be applied to different formulations of the n queens problem but 
there is no guarantee that for all value of n an optimum solution can be found.  
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3) Is simulated annealing guaranteed to find the optimum solution of an optimization 
problem like traveling salesperson problem?  
No, simulated annealing reduces the tendency of the search being stuck at a 
neighborhood local minima. However it does not guarantee that a global optimum is 
achieved. Now we will move onto today’s lecture and today’s lecture as I have said 
earlier is on two player search.  
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This is module 2 problem solving using search and lecture 7 is two player search part 1.  
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The objectives of today’s lecture:  
The student will learn how to formulate two agents zero sum games as a search problem. 
They will learn how to apply the mini max procedure to decide a move. They will learn 
how estimated pay offs are used when search to terminal nodes is not possible.  
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Humans have always been fascinated with games. Games challenge our ability to think. 
So people have been engaged in many different types of games. There are simple games 
that we play like Tic Tac Toe and Knots and Crosses. Then there are other simple games 
like Nim, Kalah and 8 puzzle and there are more difficult or more complex games like 
Chess, Othello, Bridge, Go, Checkers etc but Othello is actually not that complex.  
 
Now computers play games. Since the beginning of the history of computers or Artificial 
Intelligence people have been fascinated by the idea of making computers play games. So 
if you recollect we discussed that Alan Turing conceived that computers would play 
chess.  
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In fact the first machine to play chess or first machine that claims to play chess going 
back many years. The machine was called the Turk. Actually it was a contraption which 
claimed to play chess. Even though actually there was no machine like intelligence 
involved in it because this contraption had a human hidden inside the interior who would 
play the moves. Since then we have come a long way and today the chess program in 
1997 the deep blue chess program developed by IBM succeeded in defeating the world 
champion Gary Kasparov in a 6 game match. There are other games for which computer 
programs have been written like checkers. Checkers programs have been able to beat the 
human world champion. 
 
Backgammon: Backgammon like TD Gammon by Tesauro has been written. And 
backgammon is actually a game of chance involves the throw of dice but the TD 
Gammon competes with the top few human players. It is very good but there are human 
players who are also as good as it. 
 
In Othello the computer program plays much better than the best human players. Then 
there is a game of GO where unfortunately computer programs do not do so well so GO 
has a very high branching factor and computer programs have not been successful in GO 
so human players are much better. So we will consider a particular type of game 
involving two players where the two players alternate they compete and both the players 
have perfect information of each other, there is no dice throw or any chance factor 
involved. And these are fully competitive games called zero sum games where the pay 
off of one player is exactly the negative of the pay off of the other player. They have 
exactly opposing interests and that is why they are called zero sum games.  
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For example, this is like the game of chess where if there are two players a and b; if a 
wins b loses and if b wins a loses or a and b both have a draw. Now let us see that game 
playing can be formulated as a search problem.  
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We can take the initial position of the board. For example, in chess the initial board can 
be taken as the start position and the goal position is the position where one of the kings 
has been captured. If you take the game of Tic Tac Toe the initial position is a 3 by 3 
board with no cross or not in it. And the final position is a position where either there are 
three crosses or three Os in a row in a column or the diagonal or all the positions are 



occupied. The successor function in a game tree defines the set of legal moves from any 
position. Like in chess board if white is playing white has a number of possible moves. 
So these are the possible successor positions for white. The terminal test determines when 
the game is over. In chess the terminal test means the king of one of the sides is captured. 
When a game is over the utility function gives an outcome of the game.  
 
For example, in chess if white and black are playing if white wins we give white a utility 
of plus 1 and if white loses we give white a utility of minus 1 and if white draws with 
black we give white a utility of 0. So the basic strategy in game playing is to grow a 
search tree.  
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In search trees for games only one player can move at each door. We have a tree starting 
from the initial position to the successor positions and so on until we reach the goal 
position. At this level it is player one‘s turn to move. At the next instance it will be player 
b’s turn to move then again player one’s turn to move and so on. At the leaf position 
when the game is finished we can assign utility to the player.  
 
For example, suppose it is a simple game involving just win, draw and loss we can give a 
utility of 1 to the winner, minus 1 to the loser and 0 to both the players if there is a draw. 
In games like backgammon there is concept of gammon and the backgammon. So a 
normal win gets a value of plus 1, a gammon may get a value of plus 2 and the 
backgammon may get a value of plus 4. So there are games where the utilities are more.  
 
Therefore, in general we can have a numerical value of the utility. Once we have the 
search tree we know the utility of the leaf positions and we can assign utility to the leaf 
positions of the game tree. And we can propagate these values backwards to compute the 
utility of other nodes which are in the intermediate nodes of the tree or at the root of the 
tree. The difference between single agent search and two agent search is that in single 



agent search there is only one player who moves at every step. So we can plan the entire 
path for the player, we can find the entire path to the goal state.  
 
However, in two agent games if I am one player I can only make one move and then I 
have to wait for the move of the other player. Only after the other player moves then only 
I can plan my next move. So I cannot plan the entire sequence of moves at a time. I can 
only plan one move at a time. And then depending on the move the opponent makes we 
make our next move. Now we do not have any control over the move the opponent 
makes. But for the sake of analyzing the worst case performance of these algorithms we 
will assume that the opponent makes the move which is the best for the opponent. And 
because it is a zero sum game it is that move which puts us in the worst position. We will 
pick the best moves on our own turn and assume that in the opponent turn the opponent 
picks the worst move for us. This is a very simple example of a game tree.  
 
A is the initial position, it has two possible moves to B and E, from B the opponent can 
make a move to C or D, from E the opponent can make a move from F to G. And from C 
we can make a move to this position or this position, from D we can move here or here, F 
we can move from here or here, G we can go from here or here. These are the terminal 
positions. In the terminal positions we have the following utility. Here we have a utility 
of minus 1, here we have a utility of 5, minus 2, minus 4, 1 minus 1, 2, 4. 
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Since this is our turn to move and at C we have two choices minus 1 or 5 we seek to 
maximize our utility. So we will choose the move to this node whose utility is 5. So the 
backed up utility value at C is 5. Similarly, at d we have two choices to move to minus 2 
and minus 4 of which minus 2 is better for us so the backed up utility of t will be taken to 
be minus 2. At F we have two choices and one is better a choice than minus 1 so the 
backed up utility at F will be plus 1 and we will move in this direction. At G we have a 
choice of 2 and 4, 4 is better for us so G will have a backed up utility of plus 4. Now here 



at B and E it is the opponents chance to move. So the opponent has a choice of going to 5 
or minus 2. The opponent will choose something which is worst for us. If the utility is 5 
for us it means that from the opponents’ point of view it is minus 5. And at D from 
opponents’ point of view it is plus 2 so opponent will choose this and the backed up 
utility at this node will be minus 2. At E the opponent has a choice of going to plus 1 or 
4. It will choose this which is the worst for us and the backed up utility is plus 1. At A 
which is our turn to move we have a choice of getting utility of minus 2 or plus 1 and we 
will choose this because we get a better value up here. Therefore the backed up utility 
will be plus 1.  
 
Thus, we are assuming while backing up the utility values that at every step we make the 
best moves and the opponent makes the worst move for us. And we guarantee that if we 
go along this path the minimum pay off t we can get is plus 1. To compute these utility 
values we are alternating minimization and maximization. So here we are doing 
minimization at this layer where we play and we are doing minimization at this layer 
where the opponent plays again maximization at this layer where we play.  
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This sort of backing up is called a mini max algorithm. This is the algorithm in action. 
These are the backed up values and A has a backed up value of plus 1.  
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In two player games we have two players alternating, this is a zero sum game. It has 
perfect information where we know exactly that all the moves are deterministic and there 
is no chance involved. The two players take turns and try. The max players are the 
players who try to maximize utility and the other player the min player tries to minimize 
the utility function. We assume that the max player makes the first move. The leaves 
represent the terminal positions. Now, given the description of the game we will draw a 
game tree. In the game tree the successive nodes represent the positions where the 
different players make moves. A game tree could be infinite in size. So there could be a 
path which never leads to a goal state.  
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Here are some quick to finish definitions: The ply of the node is the number of moves 
needed to reach that node. Suppose this is the root of the game tree and then to reach a 
particular state we go through different levels. To reach this node from the root we need 
to move along three arcs. And given a complete tree the ply of a tree is defined as the 
maximum of the ply of its node. That is, the depth of the deepest leaf is called the ply of 
the game tree. First we are going to look at a brute force search algorithm to back off the 
utility function.  
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And this brute force approach wants us to start from the initial node and generate the 
entire search tree up to the leaf positions assuming that the game tree is finite. If the game 
tree is finite we can reach the leaf positions and infinite time if we have sufficient space. 
And we will see how to back up the utility values there by the mini max method.  
 
However, for all but the most trivial games the game tree can be extremely large. And it 
will not be feasible for us to generate the entire game tree. Then we will see how to 
decide the best move using some heuristic. Nevertheless we will initially look at the brute 
force search and then will improve upon that. Let us take an example of a simple game 5-
stone Nim. So this game is played with two players and a pile of stones. Suppose we have 
15 stones to start with. Each player removes either one or two stones from the pile and 
the player who removes the last stone wins the game. This is the description of the game 
of the 5-stone Nim where each player can remove one or two stones at a time. Let us 
draw the game tree of this game.  
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Initially let us assume that we start with 5 stones. Now, at this position the max player 
can move either one stone or two stones giving rise to either 4 or 3 stones left over. The 
min player can remove either 1 or 2 stones from 4 or from 3. Again the max player can 
remove 1 or 2 stones etc and we stop expanding the tree until all the leaves have 0 that is 
no stone left. The nodes are colored alternately by red and green. Red or pink represents 
the max player and green represents the min player. This is the max player and this is the 
min player.  
 
Let us look at the leaves.  
The green leaves correspond to win for min so the pay off for max here is minus 1. The 
pink 0s represent pink for max and the pay off is plus 1. Now let us apply mini max to 
this tree. Let us look at this node. It has only one child so its pay off will be same as this 
child which is minus 1. This node has two children whose utilities are minus 1 and 1. 
This is a minimizing node so the backed up utility value will be minus 1. At this node the 
backed up utility value is 1, this is a max node, the backed up utility value is the max of 1 
and minus 1 which is 1. At this node the utility is 1, at this max node the utility is max of 
1 or minus 1 which is 1 at this node the utility is min of 1 and 1 which is 1, at this node 
the utility is 1 and this node the utility is again 1. Here the utility is minus 1, here this is a 
min node the utility is minus 1 and max node utility is 1. So, for the max player the 
backed up utility at this node is plus 1 and the best move for the max player is along this 
direction that is removed once. At the max nodes the max player needs to consider only 
the best move. At the min node it must consider all possibilities and it must make sure 
that for all ways in which min could move max still has the best value. So these min 
nodes can also be looked upon as AND nodes and the max nodes as OR nodes.  
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Minimax theorem: 
The Minimax theorem states that every two person zero sum game is a forced win for one 
player or a forced draw for either player, in principle these optimal MINIMAX strategies 
can be computed. So, if we have the pay offs at the leaves and we back this up finally at 
the root we will get a value. That value can be either 0 or positive or negative. So if the 
value is positive, if max plays judiciously max can force a win from this position. If the 
backed up pay off value at the root is negative no matter how well max plays if min plays 
well and extremely intelligently then min can force Max’s loss. If the pay off is zero if 
both the players play at their best this game would end in a draw  
 
In the previous slide we looked at the game tree of 5-stone Nim and we saw that it was a 
win for max. Similarly, if we draw the game tree of Tic Tac Toe, Tic Tac Toe is a game 
which all of you are familiar with you have nine squares and you play cross the other 
player plays zero, you play cross, the other player plays zero, you play cross the other 
player plays zero and this is a win for min or win for O. Tic Tac Toe is actually a very 
simple game and you can see that the pay off of the root is 0 that is you can force a draw. 
If both players are intelligent you can force a draw.  
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In MINIMAX search the max player selects the max player selects the move that leads to 
the successor node with the highest score. Conversely the min player selects the move 
that leads to the successor node with the lowest score. The scores are computed starting 
from the leaves of the tree and backing up these scores to their predecessors in 
accordance with the MINIMAX strategy. In the MINIMAX strategy every node in the 
tree is exhibited. So you start from the root you back off at every intermediate node until 
you get the backed up value at the root.  
 
(Refer Slide Time 44:52) 
 

 
 



This is the pseudo code for the function MINIMAX. So we are starting at the node N in 
the function MINIMAX. If N is a leaf node then we return the pay off value of this leaf, 
the estimated score of this leaf. Otherwise if N is not a leaf suppose N has M successors 
N sub 1, N sub 2, N sub 3 up to N sub m if n happens to be a min node then we will 
return min of MINIMAX of N1 MINIMAX of N2 … MINIMAX of N sub m. Otherwise 
if n is a max node then we will return max of MINIMAX of N1 MINIMAX of N2 up to 
MINIMAX of Nm. So this is the MINIMAX algorithm.  
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This algorithm was invented by Von Neumann and Morgenstern on 1944. However, the 
game tree for all but the most trivial games become extremely large so we cannot do 
exhaustive search, we cannot generate the entire game tree. The MINIMAX strategy as 
we described earlier works when we can draw the entire search tree. But such trees can 
get big very fast, can get big exponentially so you know that if the tree has a branching 
factor of B then if we look at a search tree of depth D the number of nodes in the search 
tree is of order B power d. Thus, in an exponential number of nodes the search trees grow 
very fast. So, if D is not extremely small but D is reasonably large then if B is more than 
1 this becomes large very fast. 
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For example, if you consider the game tree for chess, chess has an average branching 
factor which is estimated to be about 35. Chess games are often about fifty moves for 
each player which means that the size of the game tree is about 35 to the power 100 
which happens to be approximately 10 to the power 154 which is an extremely large 
number, inconceivably large number. However, if you consider not a search tree of chess 
but the search graph of chess in fact in chess there are about 10 to the power 40 distinct 
positions but even 10 to the power 40 is an extremely large number. So we cannot 
enumerate the entire search tree for chess in anyway.  
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So what we do instead is to use heuristic MINIMAX search where we search to some 
fixed depth fixed cutoff which is called the search horizon. And if you only expand the 
tree up to a limited depth what will happen is that, we will not reach the leaf nodes. And 
if we do not reach the leaf node, that is, such an intermediate position of chess we will 
not know whether it is a win for white or win for black or draw for both of them. So we 
have to estimate at the intermediate position whether it is good for white or good for 
black. So we estimate the merit of positions at the frontier of the search tree by some 
heuristic static evaluation function because we do not yet know the final outcome.  
 
Now, after we make some moves we have to know whether that move is a good move 
and we can even apply the static evaluation function at this level. But if you assume that 
when we grow deeper in the tree we can have a better evaluation function. We can 
expand the tree up to a cutoff, we can estimate the value of the boards at this step and on 
the basis of this estimate we can apply MINIMAX to find the backed off utility value at 
the root and also which is the best move for the root to take?  
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So the modified heuristic MINIMAX function will look like this MINIMAX at the node 
n. If node n has reached the cutoff has reached our terminal test of where we want to 
terminate search then we return the estimate of n we call this the pay off. So this will be 
an estimated pay off of n. Else if n is a max node then we set v equal to plus infinity. If n 
is a min node we set v equal to minus infinity. Then we find out all successors of n. For 
each successor m(n), if n is max node v equal to max of earlier value of v and MINIMAX 
of n. Otherwise if n is a min node then v is min of earlier value of v and MINIMAX of m. 
So, basically this is MINIMAX of the partial search tree where the search tree is only 
evaluated up to a certain cutoff. And the estimated value at this frontier is computed by 
some heuristics and then MINIMAX is applied on those estimated values.  
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Here are some examples of heuristic function:  
In chess a lot of people have written lots of programs on chess. We will just mention one 
very simple heuristic that is used for chess. It is, how good a board is for a player depends 
on how many pieces the player has. But just the number of pieces is not enough. The 
types of pieces which are there are also important. So, in chess the utility function could 
be the number of pieces on board of each type multiplied by relative value summed up 
for each color. We call this heuristic the material gain.  
 
We find out the material gain for white minus the material gain of black to compute the 
utility of white at a node. And the material gain of white is the weighted sum of the 
pieces that white has. And each piece has a weight associated with it. Like a pawn can 
have some small weight may be the knight has a larger weight and so on. So this gives us 
an estimate of the board. Therefore heuristic static evaluation function for a two player 
game is a function from a state to a number, to a number which gives its estimated pay 
off.  
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The goal of a two player game is to reach a winning state but the number of moves to 
reach that winning state is unimportant. So the length of the path is not important but 
what is important is whether we can get to a winning state or the state with a higher pay 
off or not. This is one of the differences with one agent search.  
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So, if you design a heuristic static evaluation function for a two player zero sum perfect 
information game then we can use this MINIMAX strategy to play the game. From any 
given position we simply generate all the legal moves, apply our static evaluator to the 
position and then move to the position with the largest or smallest evaluation. Suppose 



we want to find out the best move to take from this position we find out all the 
successors, find out the evaluation of all the successors and take the max of them and 
move towards that. However, static evaluation functions are not very accurate. So instead 
of going on one level we might go for several levels and then back up the values there.  
 
(Refer Slide Time 54:27) 
 

 
 
Let us look at Tic Tac Toe. In Tic Tac Toe we must have a function to detect if the game 
is over. If X is maximizer then the function returns infinity if there are three X’s in a row 
which is win for X or plus 1 minus 1 if there are three O’s in a row. And our static 
evaluation function is the count of the difference in the number of different rows columns 
and diagonals occupied by X and O. So we count the number of rows columns and 
diagonal occupied by X minus the number of rows columns diagonals occupied by O. 
Hence, this is a Tic Tac Toe search tree. This is the initial position, this is Max’s turn to 
move. There are 9 possible successors but since this is symmetric there are three different 
actual successors.  
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For this one the evaluation is 3 minus 0 is equal to 3 so X occupies one row, one column, 
one diagonal and O occupies 0. Here X occupies one column one row and two diagonals, 
here X occupies one row and one column. So the evaluation is 3 here 4 here 2 here so this 
is the best move to take for X based on this one level of look ahead. 
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This algorithm is very efficient but it only considers immediate consequences of move. 
That is, it does not look over the horizon.  
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Therefore, in MINIMAX search we expand the search tree further, look at further depth 
and then find out, suppose this looks at one more depth and finds out the evaluation at 
this depth and uses MINIMAX to backup these values. For example, this board has a pay 
off of 1, this has a pay off of 2 so this pay off will be min of 1 or 2 that is 1. Similarly, we 
will just find out, here the min is minus 2, here the min is 1 and here the min is minus 1 
so max will still move here because it has a pay off of 1. So we search as deeply as 
possible and then use MINIMAX.  
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We will just stop with this last example of the MINIMAX tree. This is a MINIMAX tree 
with showing us the terminal evaluation functions. In MINIMAX we will evaluate this 
node which is 4, this is 2, this is minimizer nodes. The blue ones are minimizing nodes, 
the green ones are maximizing nodes and then the final evaluation function is 4.  
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Questions for lecture 7: 
 
Suppose the game tree for particular problem has a branching factor of b.  



If you do a p-ply look ahead and then apply MINIMAX on this game tree how many 
nodes will you expand per move?  
 
Question number 2:  
Consider MINIMAX search on a game tree with p-ply search and another MNIMAX 
search with a q-ply search. If q is greater than p which one is better?  
  


