
Artificial Intelligence
Prof. Sudeshna Sarkar

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 7
Two Player Games - 1

Today we have the seventh lecture of the course Artificial Intelligence. In today’s lecture
we will talk about two player search. In the last few lectures we have looked at different
state space formulations of some types of problems which were formulated as search
problems. But in all these cases we assumed that there is one agent or one machine who
is trying to reach the goal from the start position.

In today’s class we will consider situations where there is more than one agent. In
particular we will talk about two agent situations. In fact a specialized two agent
situations where there are two competing players so that the gain of one player is the loss
of the other player. So we will see that such problems can be formulated as different
kinds of search problems which have different characteristics than the single agent search
problems we considered earlier. But before we go on to today’s lecture I would like to
discuss the questions of the previous two lectures.

(Refer Slide Time 02:29)

First let me come to the questions from lecture 5.
Question number one:
Suppose you have the following search space this search space will be given to you in the
form of a table you were supposed to draw the state space of this problem, assume that
the initial state is A and the goal state is G and you have to work out a few search
strategies and show the search tree and what sort of path the search generates from the
initial path to the goal.

(Refer Slide Time 03:08)

This table gives you a representation of the state transition of the system. There are states
A B C D E F G and these are the edges AB, AC, BD, BE, CC, CD, CF, DC, DE, EG and
FG and in this column we have the costs of the different edges. In addition, for heuristic
search we will need to have an estimate of the cost at a particular state. So the estimate at
A is equal to 8 at B is equal to 8 at C is equal to 6, at D is equal to 5 at E is equal to 1 at F
is equal to 4 and at G which is goal state the estimate is 0.

(Refer Slide Time 04:07)

Now given this state transition diagram we have to work out three search strategies:
1) Uniform cost search

2) Greedy search and
3) A star search.

(Refer Slide Time 04:28)

And you have to show at each step of the search algorithm the node which is being
expanded and the content of fringe. Also, you have to find out the eventual solution
discovered by the specific search algorithm and the solution cost that is achieved. Now
let us go back to this table representing the transition. So A to B we have an edge with a
cost of 4. This is a graphical representation of the same table. A to B there is an edge with
cost 4; A to C there is an edge with cost 1, B to D has cost 3, B to E has cost 8, C to C has
cost 0, C to D has cost 2, then C to F has cost 6, D to C has cost 2, D to E has cost 4, E to
G has 2 and F to G has cost 8. This is a representation of the state space for this problem.
Now let us quickly look at how uniform cost search works on this problem. In uniform
cost search we start from the initial state and we expand nodes in the order of their
distance from the initial state. So, from the state A we can reach the nodes C and B.

Initially we will put the node A in the fringe or in the open list. This will be the initial
content of fringe. At the next instance we will remove this node from the fringe and
expand it. So A will be the first node that gets expanded and as a result we will get its
two children B and C which we will put in fringe. B has a cost of 4 and c has a cost of 1
so C and B will be put in fringe, C with a cost of 1 and B with a cost of 4.

(Refer Slide Time 06:09)

Now at the next step we remove the lowest cost node from fringe which happens to be C.
So we remove C from fringe expand it and then find the children of C which happened to
be D, F and C itself. Now C has already been expanded so if we keep track of it then we
will not put C in the list instead we will generate D and F. D will have a cost of 1 plus 2
is equal to 3 and F will have a cost of 7. So we will have D with a cost of 3, B with a cost
of 4 and F with a cost of 7. Next we will again remove the lowest cost node and expand it
which happens to be D. After that we will find the children of D which happen to be C
and E out of which C is in the closed list if we do maintain a closed list but if we do not
we will put it in there.

Let me not put in C right now. Let me put in E so what we get is B, E and F.
D has a cost of 3 plus 4 is equal to 7, so E will have a cost of 7. Then B is already there
with a cost of 4 and F is there with a cost of 7. Now out of these three nodes which are in
the fringe at this instant we will remove B which is the smallest cost. And then we will
find the children which happen to be E and D out of which E is already there in the fringe
and the current cost of E through B would be 4 plus 8 is equal to 12 and E is already there
in fringe with a cost of 7. So E will not go into fringe but D will and D will have a cost of
4 plus 3 is equal to 7. So, in the fringe we will have D with a cost of 7, E with a cost of 7
and F with a cost of 7. Now we have to remove the lowest cost node in fact all these three
nodes have the same cost and we can remove any one of them.

Let us say that we remove D but D has already been expanded so we will not put D and
then we will remove E. If we remove E we will have F left in fringe and E has the child
G. Now G will have a cost of 9 and F is there in fringe with a cost of 7. Next we will
expand F and F has no new child. F has another child G which will have a cost of 15 so
we will not put it in here instead we will keep G with original cost of nine and the next
step G is the only node in fringe so we will expand it and G happens to be the goal so we
are done.

Therefore in this search we have expanded the following nodes A C D B E F G. Then if
we broke this tie in other way rather if we had expanded F first then we might have got
some other sequence of nodes. But once we get the goal we can retrace and find the path.
So it happens that in this case G will have the parent as E, E will have its parent as D, D
will have its parent as C and C will have its parent as A. So the path found would be A C
D E and this path has a cost of 9 so uniform cost search has found an optimum solution
and this optimum solution has a cost of 9.

Let us now go and see what happens if we use greedy search for this problem. In greedy
search we start from A and find the node which is closest to A or rather we find the node
which is reachable from A and whose H value is at minimum.

(Refer Slide Time 12:06)

Now from A there are two nodes which are reachable B and C. B has A edge value of 8
and C has a edge value of 6 so what we will do is that we will take C because C has a
lower H value. Now from C the two successors are D and F. D has an H value of 5 and F
has a H value of 4 so we expand F so we go to F. Now F has one successor which is G
which has H value of 0 so G is expanding so we get a path A C F G which is the solution
found by greedy search in this case.

What is the cost of the solution?
It is 1 plus 6 is equal to 7 plus 8 is equal to 15 so cost is 15. Obviously in this case the
greedy algorithm does not give you the optimum cost path. Next we will look at A star
search as to how A star works on the same graph. Now in A star first the fringe contains
the single node A then A is expanded and its children C and D are generated.

(Refer Slide Time 13:41)

If you remember in A star the F value of a node N is equal to its G value that is its cost
from the initial state plus the estimate of its cost to the goal. So, for the node C the G
value is 1 here and h value is 6 so C has a cost of 7, B has a G value of 4 and H value of 8
so B’s cost is 12. Now C is expanded removed from open and its children are C, D and F
and C has already been closed so D and F are put in open whose cost F value happens to
be 8 and 11. Next D is removed from open and its children are inserted. Then E is
removed then finally we get G and as a result we get the solution path A C D E G whose
cost is 9 and the nodes expanded are only A C D E and G which happens to be lesser than
the number of nodes we expanded in the case of uniform cost search on the same graph.
Now let us look at the second question.

(Refer Slide Time 15:10)

In the second question you were asked to write the algorithm for bidirectional search
using pseudo code. Assume that each search is a breadth first search and that the forward
and backward searches alternate expanding one node at a time.

(Refer Slide Time 15:29)

This is a pseudo code. Fringe: We maintain two open lists fringe1 and fringe2. Fringe1
contains initially the start state. It represents the search tree as we move forward from the
start state and fringe2 is the open list of the search tree which we get while going
backward from the goal. So while fringe1 and fringe2 are not empty both are non empty
we first remove the first node from fringe1 let it be node. So if node is in fringe2 then we

return the path that we get from start to node concatenated with the path we get from goal
to node reversed. Otherwise if node is not in fringe2 we generate all successors of node
and add the generated nodes to the back of fringe1. If we are done we go to fringe2, we
remove the first node of fringe2 generate all successors of m and add the generated nodes
to the back of fringe2. So this is a pseudo code for bidirectional search.

(Refer Slide Time 16:49)

Third question, give the time complexity of bidirectional search when the test for
connecting the two searches is done by comparing a newly generated state in the forward
direction against all the states generated in the backward direction one at a time. So, in
bidirectional search we have the start state here, we have the goal state here, we have a
forward search from the start state, we have a backward search from the goal state until
they meet. And when they meet we get a path from start to this node N and from goal to
this node N and we concatenate them to get the path.

Now if the tree has a branching factor of b and if these two search tree generations
alternate these trees will meet about half way. So the depth of each of these trees would
be d by 2. So the number of nodes in this tree is b power d by 2 and the number of nodes
in this tree is b power d by 2 so total two times b power d by 2 is expanded. But every
time we expand a node in the forward tree we check it against all the nodes in the
backward tree and the number of nodes in the fringe of the backward tree is of the order
of b power d by 2.

Therefore, for every node expanded in the forward direction we spend order of b power d
by 2 time checking it against the fringe of the backward tree. So the total time taken is
order of b power d. But bidirectional search can be made faster if we do not check every
node in this fringe but use some hashing scheme so that this test can be performed
quickly. In that case we may be able to get a performance which is nearer to order b

power d by 2 which is square root of order b power d by 2 for plain breadth first search.
Now we move onto questions from lecture 6.

(Refer Slide Time 19:12)

1) Compare IDA star with A star in terms of time and space complexity.

(Refer Slide Time 19:20)

So let us assume a search tree with a uniform branching factor of b. In this case the time
complexity of A star is b power n of IDA star is b into b power n. The space complexity
of A star is b power n of IDA star is only b into n. This is linear. However, if the tree does
not have a uniform branching factor this may not be true but we can see that if A star

expands m nodes IDA star expands utmost m2 nodes. This happens if at every new
iteration exactly one new node is expanded.

(Refer Slide Time 20:03)

Question number 2; Is hill climbing guaranteed to find a solution to the n queens
problem?
No, hill climbing can be applied to different formulations of the n queens problem but
there is no guarantee that for all value of n an optimum solution can be found.

 (Refer Slide Time 20:19)

3) Is simulated annealing guaranteed to find the optimum solution of an optimization
problem like traveling salesperson problem?
No, simulated annealing reduces the tendency of the search being stuck at a
neighborhood local minima. However it does not guarantee that a global optimum is
achieved. Now we will move onto today’s lecture and today’s lecture as I have said
earlier is on two player search.

(Refer Slide Time 20:46)

This is module 2 problem solving using search and lecture 7 is two player search part 1.

(Refer Slide Time 21:00)

The objectives of today’s lecture:
The student will learn how to formulate two agents zero sum games as a search problem.
They will learn how to apply the mini max procedure to decide a move. They will learn
how estimated pay offs are used when search to terminal nodes is not possible.

(Refer Slide Time 21:25)

Humans have always been fascinated with games. Games challenge our ability to think.
So people have been engaged in many different types of games. There are simple games
that we play like Tic Tac Toe and Knots and Crosses. Then there are other simple games
like Nim, Kalah and 8 puzzle and there are more difficult or more complex games like
Chess, Othello, Bridge, Go, Checkers etc but Othello is actually not that complex.

Now computers play games. Since the beginning of the history of computers or Artificial
Intelligence people have been fascinated by the idea of making computers play games. So
if you recollect we discussed that Alan Turing conceived that computers would play
chess.

(Refer Slide Time 22:00)

In fact the first machine to play chess or first machine that claims to play chess going
back many years. The machine was called the Turk. Actually it was a contraption which
claimed to play chess. Even though actually there was no machine like intelligence
involved in it because this contraption had a human hidden inside the interior who would
play the moves. Since then we have come a long way and today the chess program in
1997 the deep blue chess program developed by IBM succeeded in defeating the world
champion Gary Kasparov in a 6 game match. There are other games for which computer
programs have been written like checkers. Checkers programs have been able to beat the
human world champion.

Backgammon: Backgammon like TD Gammon by Tesauro has been written. And
backgammon is actually a game of chance involves the throw of dice but the TD
Gammon competes with the top few human players. It is very good but there are human
players who are also as good as it.

In Othello the computer program plays much better than the best human players. Then
there is a game of GO where unfortunately computer programs do not do so well so GO
has a very high branching factor and computer programs have not been successful in GO
so human players are much better. So we will consider a particular type of game
involving two players where the two players alternate they compete and both the players
have perfect information of each other, there is no dice throw or any chance factor
involved. And these are fully competitive games called zero sum games where the pay
off of one player is exactly the negative of the pay off of the other player. They have
exactly opposing interests and that is why they are called zero sum games.

(Refer Slide Time 24:22)

For example, this is like the game of chess where if there are two players a and b; if a
wins b loses and if b wins a loses or a and b both have a draw. Now let us see that game
playing can be formulated as a search problem.

(Refer Slide Time 25:11)

We can take the initial position of the board. For example, in chess the initial board can
be taken as the start position and the goal position is the position where one of the kings
has been captured. If you take the game of Tic Tac Toe the initial position is a 3 by 3
board with no cross or not in it. And the final position is a position where either there are
three crosses or three Os in a row in a column or the diagonal or all the positions are

occupied. The successor function in a game tree defines the set of legal moves from any
position. Like in chess board if white is playing white has a number of possible moves.
So these are the possible successor positions for white. The terminal test determines when
the game is over. In chess the terminal test means the king of one of the sides is captured.
When a game is over the utility function gives an outcome of the game.

For example, in chess if white and black are playing if white wins we give white a utility
of plus 1 and if white loses we give white a utility of minus 1 and if white draws with
black we give white a utility of 0. So the basic strategy in game playing is to grow a
search tree.

(Refer Slide Time 26:48)

In search trees for games only one player can move at each door. We have a tree starting
from the initial position to the successor positions and so on until we reach the goal
position. At this level it is player one‘s turn to move. At the next instance it will be player
b’s turn to move then again player one’s turn to move and so on. At the leaf position
when the game is finished we can assign utility to the player.

For example, suppose it is a simple game involving just win, draw and loss we can give a
utility of 1 to the winner, minus 1 to the loser and 0 to both the players if there is a draw.
In games like backgammon there is concept of gammon and the backgammon. So a
normal win gets a value of plus 1, a gammon may get a value of plus 2 and the
backgammon may get a value of plus 4. So there are games where the utilities are more.

Therefore, in general we can have a numerical value of the utility. Once we have the
search tree we know the utility of the leaf positions and we can assign utility to the leaf
positions of the game tree. And we can propagate these values backwards to compute the
utility of other nodes which are in the intermediate nodes of the tree or at the root of the
tree. The difference between single agent search and two agent search is that in single

agent search there is only one player who moves at every step. So we can plan the entire
path for the player, we can find the entire path to the goal state.

However, in two agent games if I am one player I can only make one move and then I
have to wait for the move of the other player. Only after the other player moves then only
I can plan my next move. So I cannot plan the entire sequence of moves at a time. I can
only plan one move at a time. And then depending on the move the opponent makes we
make our next move. Now we do not have any control over the move the opponent
makes. But for the sake of analyzing the worst case performance of these algorithms we
will assume that the opponent makes the move which is the best for the opponent. And
because it is a zero sum game it is that move which puts us in the worst position. We will
pick the best moves on our own turn and assume that in the opponent turn the opponent
picks the worst move for us. This is a very simple example of a game tree.

A is the initial position, it has two possible moves to B and E, from B the opponent can
make a move to C or D, from E the opponent can make a move from F to G. And from C
we can make a move to this position or this position, from D we can move here or here, F
we can move from here or here, G we can go from here or here. These are the terminal
positions. In the terminal positions we have the following utility. Here we have a utility
of minus 1, here we have a utility of 5, minus 2, minus 4, 1 minus 1, 2, 4.

(Refer Slide Time 31:16)

Since this is our turn to move and at C we have two choices minus 1 or 5 we seek to
maximize our utility. So we will choose the move to this node whose utility is 5. So the
backed up utility value at C is 5. Similarly, at d we have two choices to move to minus 2
and minus 4 of which minus 2 is better for us so the backed up utility of t will be taken to
be minus 2. At F we have two choices and one is better a choice than minus 1 so the
backed up utility at F will be plus 1 and we will move in this direction. At G we have a
choice of 2 and 4, 4 is better for us so G will have a backed up utility of plus 4. Now here

at B and E it is the opponents chance to move. So the opponent has a choice of going to 5
or minus 2. The opponent will choose something which is worst for us. If the utility is 5
for us it means that from the opponents’ point of view it is minus 5. And at D from
opponents’ point of view it is plus 2 so opponent will choose this and the backed up
utility at this node will be minus 2. At E the opponent has a choice of going to plus 1 or
4. It will choose this which is the worst for us and the backed up utility is plus 1. At A
which is our turn to move we have a choice of getting utility of minus 2 or plus 1 and we
will choose this because we get a better value up here. Therefore the backed up utility
will be plus 1.

Thus, we are assuming while backing up the utility values that at every step we make the
best moves and the opponent makes the worst move for us. And we guarantee that if we
go along this path the minimum pay off t we can get is plus 1. To compute these utility
values we are alternating minimization and maximization. So here we are doing
minimization at this layer where we play and we are doing minimization at this layer
where the opponent plays again maximization at this layer where we play.

(Refer Slide Time 34:07)

This sort of backing up is called a mini max algorithm. This is the algorithm in action.
These are the backed up values and A has a backed up value of plus 1.

(Refer Slide Time 34:25)

In two player games we have two players alternating, this is a zero sum game. It has
perfect information where we know exactly that all the moves are deterministic and there
is no chance involved. The two players take turns and try. The max players are the
players who try to maximize utility and the other player the min player tries to minimize
the utility function. We assume that the max player makes the first move. The leaves
represent the terminal positions. Now, given the description of the game we will draw a
game tree. In the game tree the successive nodes represent the positions where the
different players make moves. A game tree could be infinite in size. So there could be a
path which never leads to a goal state.

(Refer Slide Time 35:35)

Here are some quick to finish definitions: The ply of the node is the number of moves
needed to reach that node. Suppose this is the root of the game tree and then to reach a
particular state we go through different levels. To reach this node from the root we need
to move along three arcs. And given a complete tree the ply of a tree is defined as the
maximum of the ply of its node. That is, the depth of the deepest leaf is called the ply of
the game tree. First we are going to look at a brute force search algorithm to back off the
utility function.

(Refer Slide Time 36:46)

And this brute force approach wants us to start from the initial node and generate the
entire search tree up to the leaf positions assuming that the game tree is finite. If the game
tree is finite we can reach the leaf positions and infinite time if we have sufficient space.
And we will see how to back up the utility values there by the mini max method.

However, for all but the most trivial games the game tree can be extremely large. And it
will not be feasible for us to generate the entire game tree. Then we will see how to
decide the best move using some heuristic. Nevertheless we will initially look at the brute
force search and then will improve upon that. Let us take an example of a simple game 5-
stone Nim. So this game is played with two players and a pile of stones. Suppose we have
15 stones to start with. Each player removes either one or two stones from the pile and
the player who removes the last stone wins the game. This is the description of the game
of the 5-stone Nim where each player can remove one or two stones at a time. Let us
draw the game tree of this game.

(Refer Slide Time 38:35)

Initially let us assume that we start with 5 stones. Now, at this position the max player
can move either one stone or two stones giving rise to either 4 or 3 stones left over. The
min player can remove either 1 or 2 stones from 4 or from 3. Again the max player can
remove 1 or 2 stones etc and we stop expanding the tree until all the leaves have 0 that is
no stone left. The nodes are colored alternately by red and green. Red or pink represents
the max player and green represents the min player. This is the max player and this is the
min player.

Let us look at the leaves.
The green leaves correspond to win for min so the pay off for max here is minus 1. The
pink 0s represent pink for max and the pay off is plus 1. Now let us apply mini max to
this tree. Let us look at this node. It has only one child so its pay off will be same as this
child which is minus 1. This node has two children whose utilities are minus 1 and 1.
This is a minimizing node so the backed up utility value will be minus 1. At this node the
backed up utility value is 1, this is a max node, the backed up utility value is the max of 1
and minus 1 which is 1. At this node the utility is 1, at this max node the utility is max of
1 or minus 1 which is 1 at this node the utility is min of 1 and 1 which is 1, at this node
the utility is 1 and this node the utility is again 1. Here the utility is minus 1, here this is a
min node the utility is minus 1 and max node utility is 1. So, for the max player the
backed up utility at this node is plus 1 and the best move for the max player is along this
direction that is removed once. At the max nodes the max player needs to consider only
the best move. At the min node it must consider all possibilities and it must make sure
that for all ways in which min could move max still has the best value. So these min
nodes can also be looked upon as AND nodes and the max nodes as OR nodes.

(Refer Slide Time 41:56)

Minimax theorem:
The Minimax theorem states that every two person zero sum game is a forced win for one
player or a forced draw for either player, in principle these optimal MINIMAX strategies
can be computed. So, if we have the pay offs at the leaves and we back this up finally at
the root we will get a value. That value can be either 0 or positive or negative. So if the
value is positive, if max plays judiciously max can force a win from this position. If the
backed up pay off value at the root is negative no matter how well max plays if min plays
well and extremely intelligently then min can force Max’s loss. If the pay off is zero if
both the players play at their best this game would end in a draw

In the previous slide we looked at the game tree of 5-stone Nim and we saw that it was a
win for max. Similarly, if we draw the game tree of Tic Tac Toe, Tic Tac Toe is a game
which all of you are familiar with you have nine squares and you play cross the other
player plays zero, you play cross, the other player plays zero, you play cross the other
player plays zero and this is a win for min or win for O. Tic Tac Toe is actually a very
simple game and you can see that the pay off of the root is 0 that is you can force a draw.
If both players are intelligent you can force a draw.

(Refer Slide Time 43:58)

In MINIMAX search the max player selects the max player selects the move that leads to
the successor node with the highest score. Conversely the min player selects the move
that leads to the successor node with the lowest score. The scores are computed starting
from the leaves of the tree and backing up these scores to their predecessors in
accordance with the MINIMAX strategy. In the MINIMAX strategy every node in the
tree is exhibited. So you start from the root you back off at every intermediate node until
you get the backed up value at the root.

(Refer Slide Time 44:52)

This is the pseudo code for the function MINIMAX. So we are starting at the node N in
the function MINIMAX. If N is a leaf node then we return the pay off value of this leaf,
the estimated score of this leaf. Otherwise if N is not a leaf suppose N has M successors
N sub 1, N sub 2, N sub 3 up to N sub m if n happens to be a min node then we will
return min of MINIMAX of N1 MINIMAX of N2 … MINIMAX of N sub m. Otherwise
if n is a max node then we will return max of MINIMAX of N1 MINIMAX of N2 up to
MINIMAX of Nm. So this is the MINIMAX algorithm.

(Refer Slide Time 45:58)

This algorithm was invented by Von Neumann and Morgenstern on 1944. However, the
game tree for all but the most trivial games become extremely large so we cannot do
exhaustive search, we cannot generate the entire game tree. The MINIMAX strategy as
we described earlier works when we can draw the entire search tree. But such trees can
get big very fast, can get big exponentially so you know that if the tree has a branching
factor of B then if we look at a search tree of depth D the number of nodes in the search
tree is of order B power d. Thus, in an exponential number of nodes the search trees grow
very fast. So, if D is not extremely small but D is reasonably large then if B is more than
1 this becomes large very fast.

(Refer Slide Time 47:08)

For example, if you consider the game tree for chess, chess has an average branching
factor which is estimated to be about 35. Chess games are often about fifty moves for
each player which means that the size of the game tree is about 35 to the power 100
which happens to be approximately 10 to the power 154 which is an extremely large
number, inconceivably large number. However, if you consider not a search tree of chess
but the search graph of chess in fact in chess there are about 10 to the power 40 distinct
positions but even 10 to the power 40 is an extremely large number. So we cannot
enumerate the entire search tree for chess in anyway.

(Refer Slide Time 48:03)

So what we do instead is to use heuristic MINIMAX search where we search to some
fixed depth fixed cutoff which is called the search horizon. And if you only expand the
tree up to a limited depth what will happen is that, we will not reach the leaf nodes. And
if we do not reach the leaf node, that is, such an intermediate position of chess we will
not know whether it is a win for white or win for black or draw for both of them. So we
have to estimate at the intermediate position whether it is good for white or good for
black. So we estimate the merit of positions at the frontier of the search tree by some
heuristic static evaluation function because we do not yet know the final outcome.

Now, after we make some moves we have to know whether that move is a good move
and we can even apply the static evaluation function at this level. But if you assume that
when we grow deeper in the tree we can have a better evaluation function. We can
expand the tree up to a cutoff, we can estimate the value of the boards at this step and on
the basis of this estimate we can apply MINIMAX to find the backed off utility value at
the root and also which is the best move for the root to take?

(Refer Slide Time 49:52)

So the modified heuristic MINIMAX function will look like this MINIMAX at the node
n. If node n has reached the cutoff has reached our terminal test of where we want to
terminate search then we return the estimate of n we call this the pay off. So this will be
an estimated pay off of n. Else if n is a max node then we set v equal to plus infinity. If n
is a min node we set v equal to minus infinity. Then we find out all successors of n. For
each successor m(n), if n is max node v equal to max of earlier value of v and MINIMAX
of n. Otherwise if n is a min node then v is min of earlier value of v and MINIMAX of m.
So, basically this is MINIMAX of the partial search tree where the search tree is only
evaluated up to a certain cutoff. And the estimated value at this frontier is computed by
some heuristics and then MINIMAX is applied on those estimated values.

(Refer Slide Time 51:22)

Here are some examples of heuristic function:
In chess a lot of people have written lots of programs on chess. We will just mention one
very simple heuristic that is used for chess. It is, how good a board is for a player depends
on how many pieces the player has. But just the number of pieces is not enough. The
types of pieces which are there are also important. So, in chess the utility function could
be the number of pieces on board of each type multiplied by relative value summed up
for each color. We call this heuristic the material gain.

We find out the material gain for white minus the material gain of black to compute the
utility of white at a node. And the material gain of white is the weighted sum of the
pieces that white has. And each piece has a weight associated with it. Like a pawn can
have some small weight may be the knight has a larger weight and so on. So this gives us
an estimate of the board. Therefore heuristic static evaluation function for a two player
game is a function from a state to a number, to a number which gives its estimated pay
off.

(Refer Slide Time 53:03)

The goal of a two player game is to reach a winning state but the number of moves to
reach that winning state is unimportant. So the length of the path is not important but
what is important is whether we can get to a winning state or the state with a higher pay
off or not. This is one of the differences with one agent search.

(Refer Slide Time 53:32)

So, if you design a heuristic static evaluation function for a two player zero sum perfect
information game then we can use this MINIMAX strategy to play the game. From any
given position we simply generate all the legal moves, apply our static evaluator to the
position and then move to the position with the largest or smallest evaluation. Suppose

we want to find out the best move to take from this position we find out all the
successors, find out the evaluation of all the successors and take the max of them and
move towards that. However, static evaluation functions are not very accurate. So instead
of going on one level we might go for several levels and then back up the values there.

(Refer Slide Time 54:27)

Let us look at Tic Tac Toe. In Tic Tac Toe we must have a function to detect if the game
is over. If X is maximizer then the function returns infinity if there are three X’s in a row
which is win for X or plus 1 minus 1 if there are three O’s in a row. And our static
evaluation function is the count of the difference in the number of different rows columns
and diagonals occupied by X and O. So we count the number of rows columns and
diagonal occupied by X minus the number of rows columns diagonals occupied by O.
Hence, this is a Tic Tac Toe search tree. This is the initial position, this is Max’s turn to
move. There are 9 possible successors but since this is symmetric there are three different
actual successors.

(Refer Slide Time 55:22)

For this one the evaluation is 3 minus 0 is equal to 3 so X occupies one row, one column,
one diagonal and O occupies 0. Here X occupies one column one row and two diagonals,
here X occupies one row and one column. So the evaluation is 3 here 4 here 2 here so this
is the best move to take for X based on this one level of look ahead.

(Refer Slide Time 55:59)

This algorithm is very efficient but it only considers immediate consequences of move.
That is, it does not look over the horizon.

(Refer Slide Time 56:06)

Therefore, in MINIMAX search we expand the search tree further, look at further depth
and then find out, suppose this looks at one more depth and finds out the evaluation at
this depth and uses MINIMAX to backup these values. For example, this board has a pay
off of 1, this has a pay off of 2 so this pay off will be min of 1 or 2 that is 1. Similarly, we
will just find out, here the min is minus 2, here the min is 1 and here the min is minus 1
so max will still move here because it has a pay off of 1. So we search as deeply as
possible and then use MINIMAX.

(Refer Slide Time 56:59)

(Refer Slide Time 57:04)

We will just stop with this last example of the MINIMAX tree. This is a MINIMAX tree
with showing us the terminal evaluation functions. In MINIMAX we will evaluate this
node which is 4, this is 2, this is minimizer nodes. The blue ones are minimizing nodes,
the green ones are maximizing nodes and then the final evaluation function is 4.

(Refer Slide Time 57:49)

Questions for lecture 7:

Suppose the game tree for particular problem has a branching factor of b.

If you do a p-ply look ahead and then apply MINIMAX on this game tree how many
nodes will you expand per move?

Question number 2:
Consider MINIMAX search on a game tree with p-ply search and another MNIMAX
search with a q-ply search. If q is greater than p which one is better?

