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Now we will star t the fifth lecture for this course Artificial Intelligence. Let us discuss 
about the module on search methods. Today we will primarily focus on informed search 
methods. In the last class we talked about several blind search strategies that do not use 
any problem specific information. We discussed depth first search, breadth first search as 
well as iterative deepening search. Today we are going to finish that discussion after 
talking about by bidirectional search and then we will move on to informed search that 
use heuristics information. In bidirectional search we will discuss the algorithm, the time 
and space complexities and then we will move onto informed search.  
 
We will talk about the algorithm A star and before that we will talk about greedy search 
algorithm as well as uniform cost search which are special cases of A star.  
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At the end of this lesson the student should be able to do the following: 
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He should be able to understand what a heuristic function is?  
They should be able to design heuristic functions for a given problem. They should be 
able to prove that if A star uses an admissible heuristic function it will terminate and 
produce an optimum solution. They should learn how to compare two heuristic functions 
as well as how to combine multiple heuristics. So, in the last class we talked about blind 
search methods namely depth first search, breadth first search, iterative deepening search. 
Today we will talk about bidirectional search and then we will move on to informed 
search.  
 
Subsequently in the other lectures we will talk about constant satisfaction which can be 
modeled as search problems and we will also look at adversary search which is used for 
dealing with two person games.  
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Bidirectional search: In the other search methods we discussed one star ts from the star t 
node and then the search process explores the different nodes in search of a goal node. So 
the search branches out from the star t state. In bidirectional search, in addition one will 
also star t from a goal node and search backwards from the goal node trying to reach 
either the star t state or one of the states which is reachable from the star t state. So, if one 
can reach from a goal to a state which is also reachable from the star t state then we have 
found a path from the star t state to a goal state. The strategy which employs this is called 
bidirectional search.  
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So we can look at this diagram which illustrates bidirectional search. This is the star t 
state and this is the tree which would be expanded if one star ts from the star t state and 
moves forward and one will be able to find the goal after examining these light grey 
states. In bidirectional search however, one would star t both from the star t state and 
examine certain portion of the star t state.  
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At the same time he will also star t from the goal state and move backwards until the 
search frontiers of the forward search as well as the backward search meet. And if they 
meet at a particular node we would be able to find a path from the path to the goal state. 
So we see that it is possible that in bidirectional search one many to expand fewer nodes 
than one would if one carried on forward search. 
 
However, this may not always be the case. This is an example where the forward search 
is illustrated by this light grey envelope. So this is the envelope of forward search and 
this is the envelope of backward search. And we see that these two envelopes do not 
really meet so that these paths are disjoined so we do not save on expanding any nodes if 
we do bidirectional search.  
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In bidirectional search what we do is that we carry on the search process forwards from 
the star t state as well as backwards from the goal and we alternate these two phases.  
 
For example, we first expand some nodes in the forward direction and then expand some 
nodes in the backward direction then again in the forward direction again in the backward 
direction and so on. Every time we expand a node we need to check whether that node 
has been expanded in the other search tree. If it has been expanded then we would have 
found a path from the star t to the goal. That is, we stop when the frontiers of the forward 
and backward tree intersect.  
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However, in order to do the bidirectional search we have to star t from a goal state. There 
are many problems where there are many goal states. It is difficult to decide which goal 
state we should star t from. Therefore bidirectional search works best if there is one goal 
state for the problem which is easy to get to. The second problem one might encounter in 
bidirectional search is, how do we search backwards?  
For all problems it may not be possible to search backwards. So, being able to search 
backwards means we have these reversible operators. That is, we can generate the 
predecessors of a state as well as the successors. In such problems bidirectional search is 
helpful.  
 
Also, we alternate from searching in the forwards direction and searching in the 
backwards direction and every time we expand a node we have to check whether that 
node occurs in the frontier of the other search tree. Therefore for bidirectional search to 
work well we would need an efficient way to check whether a given node has already 
been expanded.  
 
If we take every node in the frontier and check whether it is the same as the correct node 
then any advantage we get by bidirectional search will easily be lost. And then for each 
of the forward search as well as the backward search we have to select a given search 
algorithm. However, bidirectional search can sometimes lead to finding a solution more 
quickly.  
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So let us see what we would gain if we use bidirectional search. Suppose this is our start 
state and this is our goal state and let us say the branching factor is b and the distance 
from star t to goal is d then breadth first search for example would expand order BFS will 
expand order b power d nodes and that would be the time and space complexity. In 
bidirectional search if we are lucky the forward tree and the backward tree will meet 
exactly half way. So this is the forward tree and this is the backward tree and if we are 



lucky we have found an intersection of the forward tree and the backward tree. Therefore 
we would get a path from the goal to this node as well as from the star t to this node that 
is we will have a path from star t to goal.  
 
Now in the best case this distance will be d by 2 and also this distance will be d by 2. So 
the number of nodes expanded in bidirectional search would be two times b power d by 2 
which is better than b to the power d nodes expanded by BFS. So, in bidirectional search 
in the best case we will get two times b power d by 2 nodes. However, the space 
complexity is also b power d by 2 because we would have to store the frontier of at least 
one of the search trees. Like often what is done is we do breadth first search in one 
direction and DFS in the other direction. So at least for one of the search trees we must 
have a breadth first search type of procedure where we have a frontier which can be 
ordered b power d by 2.  
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Let us just go back and compare the different line search methods we have considered so 
far. Breadth first search requires time of b power d space of b power d it is optimum and 
it is complete. Depth first search requires time of order b power d space of bm where m is 
the depth of the search tree, it is not optimum and it is not complete. Iterative deepening 
search has a time complexity of b power d and space complexity of only b into d where d 
is the length of the cheapest solution, it is optimum, it is complete.  
 
Bidirectional search when it is applicable might have a time complexity of b power d by 
2, space complexity of b power d by 2 it is optimum you can show that and it is also 
complete. However, in some cases unless you have a very efficient way of checking with 
the frontier of the other search tree they could be more overhead involved in trying to 
check if a node is there in the search tree.  
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Now, we have so far considered search trees where we star t from the search star t state 
and unfold the tree we get. Now it is quite possible that the search space is more like a 
graph but not a tree. That is, from the star t state to a node n there could be multiple 
paths. If we look at the search space as a tree we might be getting to that node many 
times over and we are expanding a node more than once. So, if you want to deal with this 
we must consider that the search space may be graph and that in this case the search tree 
may contain different nodes corresponding to the same state. These are examples of some 
search spaces which contain nodes more than once.  
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Look at this search graph:  
This is node a, this is node b, this is node c, this is node d and so on. There are two paths, 
two arcs from A to B, two arcs from B to C, two arcs from C to D and so on. Now if we 
unfold this as a tree this is A, this is B, this is C C C C. So there would be 8 nodes 
corresponding to D, 16 corresponding to E and so on. So if you have n nodes this tree 
will have size of the order of 2 power n so the search tree can be exponentially larger than 
the search space.  
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Tree search methods are not very good for such types of search spaces. So, in order to 
have an algorithm which can work efficiently when the search space is a graph we need 
to avoid repeated state. There are different mechanisms we could use. For example, we 
can choose not to return to the state we just came from. This is a very simple trick that we 
often use in 8 puzzle. When we expand a node expand a node and generate its successors 
we do not generate its immediate parent. By this we mean we can avoid some sort of 
duplication. A more sophisticated method is not to create paths with cycles in them. That 
is, when we expand a node to generate its successor we check that the successor does not 
occur in the path from the node to the root. That is, we do not generate in cycles. And the 
best way of doing this is not to ever generate a node more than once by checking 
whenever we generate a state whether it was ever created before.  
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Unfortunately for doing this we must keep track of all the nodes that were expanded ever 
and we must check that this node was not expanded before. We need to maintain a list 
other than the fringe in the search algorithms we have. We usually call this particular list 
closed. So, closed is a list which keeps track of the entire expanded node and whenever 
we generate a node we check whether or not it is already enclosed. This is the basic graph 
search algorithm which is a variation of the basic tree search algorithm that we looked at 
earlier.  
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So fringe is the list containing the initial state. A fringe is often referred to as open. So 
these are the nodes which are in the frontier of the search tree and which are candidates 
for expansion. It is called the open list or the fringe. Closed is another list which is 
initially empty and it will keep all the expanded nodes. So the algorithm proceeds like 
this: We have a loop. If fringe is empty that is no more nods to expand we return failure. 
Otherwise we remove the first node from fringe and check that node is a goal or not. 
 
If node is a goal we have found a goal state and we return by tracing the pointers and 
finding the path from the root to this node. Otherwise if node is not a goal node we put 
node in closed. Generate all successors of node. Let us call them S. S is the set of 
successors of node. For all nodes m in S if m is going to be generated if m is not in closed 
then you add m to fringe but if m is in closed you ignore it. Therefore we have modified 
the tree search algorithm for graph search. The basic difference is we have included this 
closed list which was initially empty. Whenever we expand a node we put it closed. 
When we generate a new node we check whether it is already in closed. If it is closed 
then we do not generate it else we generate it. Now let us look at a variation of breadth 
first search which we call uniform cost search.  
 
As we discussed breadth first search expands node according to its level, level by level. 
So it expands nodes which are smaller number of steps away from the star t earlier. 
However, sometimes arc costs are not uniform. So, instead of generating nodes level by 
level we would like to generate those nodes that have smaller cost from the parent. So we 
might like to generate nodes in the order of their distance from the parent and this is done 
by Uniform Cost Search UCS.  
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In Uniform Cost Search when we put the nodes in the queue the order of the nodes by the 
path cost from the root to that node. But instead in breadth first search what we do is we 
maintain a queue for storing the fringe. That is, the nodes expanded are added at the back 



of the queue. In Uniform Cost Search we maintain the fringe as a priority queue. The 
priority of a node is its distance from the root. So, nodes are enqueued by the path cost 
for which a priority queue can be used. The heap data structure is ideal for storing a 
priority queue.  
 
We denote by g(n) the cost of the path from the star t node to the current node n. So g(n) 
is the cost of the path from the star t node to the current node. We store nodes in the 
priority queue according to the value of g. And the algorithm expands the lowest cost 
node of the fringe. The algorithm can be shown to be complete. It is optimal or 
admissible and it has exponential time and space complexity in the worst case. As an 
example let us look at this search graph consisting of these five nodes.  
 
This (Refer Slide Time:: 23:04) is the star t node and this is the goal node. In Uniform 
Cost Search we will star t will the star t state s. First generate A which has a g value of 1 
then generate B which has a g value of 5. Then the candidates for expansion are g along 
this path with a g value of 13, g along this path with g value of 10, c along this path with 
a g value of 18. This is smaller so we will expand this g which has a g value of 10. And 
then we will try to find out which is the shortest path and then we will expand this node 
goal and we would have found the shortest cost path from the star t state to the goal state.  
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As a result of breadth first search we can find the smallest length path from the star t to 
the goal. If you do Uniform Cost Search you can find the minimum cost path from the 
star t to the goal. Next we will come to Informed Search.  
 
 
 
 
 



(Refer Slide Time: 24:27) 
 

 
 
In Informed Search we use heuristics about the problem domain. Uninformed search 
methods we looked at earlier systematically explore the state space to find the goal. They 
are not very efficient in most cases. We saw that most of the time the complexity of the 
algorithm was order b power d that is exponential in the length of the search path. 
Informed Search method tries to improve problem solving efficiency by using problem 
specific knowledge.  
 
Let us first try to see what we mean by heuristics. Heuristics literally means rule of 
thumb. This is a definition of heuristics by Judea pearl. Heuristics are criteria, methods or 
principles for deciding which among several alternative courses of action promises to be 
the most effective in order to achieve some goal. In Informed Search we use heuristics to 
identify the most promising search path.  
 
Let us look at some examples of heuristic function. A heuristic function at a node n 
which we will use for the purpose of the search algorithms is an estimate. The heuristic 
function is an estimate of the optimum cost from the current node to a goal. We usually 
denote a heuristic function at a node n by h(n) which is the estimated cost of the cheapest 
path from node n to the goal node.  
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For example, let us say we want to get a path from Kolkata to Guwahati, so here we have 
a map. This is Kolkata on the map and this is Guwahati on the map. And the actual path 
from Kolkata to Guwahati might be this. If you do not know what the actual path is, an 
estimate of the distance of this path is the Euclidean distance or the shortest distance 
between Kolkata and Guwahati. So this distance, the straight line distance between k and 
g is an underestimate of the actual distance of the path from k to g.  
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Let us look at the game of 15 puzzle we discussed earlier. This is one configuration for 
the 8 puzzle. So this is a given configuration of 8 puzzle and this is the goal we are trying 
to achieve. One heuristic for 8 puzzle is the number of tiles out of place.  
 
What is the actual cost to get from n to goal?  
We have to take a number of move to get from n to goal and that is what we would like to 
find out. However, it is not easy to look at this and say what would be minimum cost 
path. But what we can easily do is find out the number of tiles which are not in their 
correct location.  
 
For example, look at 2 here, 2 is not in its correct location in state n. In order to move to 
its correct location we have to move 2 at least once. Similarly, 8 is not in its correct 
location, 3 is in its correct location, 1 is not in its correct location, 6 is not in its correct 
location, 4 is in the correct location, 5 is in the correct location, 7 is not in the correct 
location. So the heuristic at node n is equal to 5 because five tiles are not in their correct 
location. And we must make at least five moves to move them to their correct location. 
So h(n) that is 5 is an underestimate of the actual number of steps required to move to the 
goal state.  
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Another heuristics for 8 puzzle is the Manhattan distance heuristic. For example, let us 
say 2 this node 2 is not in its correct position. In order to move to its correct position we 
have to move to one position to the right. However, look at node 8. Node 8 is not in its 
correct position. It has to move to this position. To move node 8 to this position we have 
to move one step down and one step to the left. That is, we need at least two moves. To 
move 6 to its correct position we need at least one move. To move 7 to its correct 
position we need at least one move. To move 1 to its correct position we need at least one 
move. So h(n) in this case is, one move for 2, two moves for 8, one move for 6, one move 
for 7 and one move for 1 that is in this case it is equal to 6. Therefore this is an 



underestimate of the actual number of moves required to move from this state to this 
state.  
 
Now we will look at another search algorithm which uses this heuristic information. Best 
first search is a generalization of breadth first search where the fringe or the open list is 
maintained as a priority queue and a cost function f(n) is used which denotes the priority 
of a node. So f(n) is the cost function of the node which denotes the priority of the node.  
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Nodes are put in fringe sorted according to the value of f(n). So this is the modification of 
the basic search algorithm using the function f(n). Fringe is maintained as a priority 
queue containing the initial state.  
 
If fringe is empty return failure otherwise remove the element with the highest priority 
from fringe let that be node, if node is goal we return the path from initial state to the 
node otherwise we generate all successors of node. Put the newly generated nodes into 
fringe according to their f values, end loop. So best first search is a variation of the search 
algorithm where fringe is maintained as a priority queue and nodes are put in the priority 
queue ordered by their priorities which is denoted by the f value of a node.  
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Let us try to now look at different variations of best first search according to the function 
f that they use. The simplest algorithm we will look at is the Greedy Search algorithm. In 
Greedy Search we always expand the node with the smallest estimated cost to reach the 
goal. That is, the f value of a node is h value of a node. So h is a heuristic function. The h 
value of a node is an estimate of the actual path cost from the nod to reach the goal. So 
we use f(n) is equal to h(n). However, we can show that this search algorithm is not 
optimum and is not complete.  
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This is an example of greedy method. We are star ting here from the star t state which is 
Seattle and our objective is to reach Boston. So these are the arcs, these rectangles are the 
cities and the r x denote the cost between cities. Now, if we do greedy search we will 
evaluate a heuristic function at each of these nodes and from Seattle we will move to that 
city which has the smallest h value to Boston. and in this case suppose if it turns out to be 
Reno then from Reno we go to Memphis, Memphis to Atlanta to New York to Detroit 
and to Boston and we get a path like this. However, greedy search may not always give 
us the optimum solution which we can show.  
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Next we will come to A star search which uses a slightly more sophisticated heuristic 
function. So in best first search f(n) is equal to g(n) plus h(n).  
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We have seen that g(n) is the cost to get to the node from the star t state and h(n) is an 
estimate to get from the node n to the goal state. That is, g(n) is the sum of the edge costs 
from star t to end and h(n) is an estimate of lowest cost path from n to goal. Now it is a 
theorem and we will show that if h(n) is admissible then A star search which uses f(n) is 
equal to g(n) plus h(n) as the priority function which will find a optimum solution. And 
h(n) is admissible if it underestimates the cost of any solution which can be reached from 
node. So an underestimating heuristic function is an admissible heuristic function which 
gives an estimate which is a lower bound of the actual cost. Now this is the algorithm A 
star for graphs.  
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This is a generalized A star called graph search. Here we maintain two lists open and 
closed. Open maintains the nodes on the frontier of the search tree and closed maintains 
the expanded nodes. Initially we put the start sets on open. We also keep at every node a 
pointer to its path from the root. That is, we keep a pointer to its parent. So open contains 
the tuple s nil. Then we have a loop, while open is not empty we remove from open the 
node n, p which has the minimum value of f(n). We put n, p on closed.  
 
If n is a goal node we return success and we return the path p for each edge connecting n 
and m with cost c. So n is the node that we are expanding and we find its successors. For 
each successor m of node n we check if m is in closed with a path q with the parent point 
q. So, if m q is on closed already and the current path the path from n is p. So the current 
path for m is p concatenated with e. Therefore if the cost of the path p, e is cheaper than 
the path q then the current path to m is cheaper than the path we have already got so we 
will consider this path.  
 
However, otherwise the path we obtained earlier for m was cheaper and we will throw 
away the current node m. So if m, q is already on closed and p concat e is cheaper than q 
we remove n from closed and put m, p concat e on open. Otherwise if m, q is not on 
closed but m, q is on open and p concat e is cheaper than q we replace q with p concat e. 
Otherwise if m is not on open we put m and the path p concat e on open and when open is 
empty we return failure. So this is the generalized algorithm for A star search.  
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We will show that A star is an optimum algorithm. That is it is also optimally efficient, it 
gives the optimum solution and it is also the optimally efficient algorithm. A star is 
complete. However, the number of nodes searched is still exponential in the worst case 
unless the heuristic is extremely or logarithmically accurate.  
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Now we will try to find out the condition on h(n) for which A star gives the optimum 
solution. So the property of admissibility is that, provided a solution exists the first 
solution found by the algorithm is an optimum solution. If A star can guarantee this we 
will say that A star is an admissible algorithm. So in order to show that A star is 
admissible we will try to find out the conditions under which A star is admissible.  
 
Firstly, the state space graph should have this characteristic. Every node must have a 
finite number of successors. In the search tree or search graph every node must have a 
finite number of successors. Every arc must have bounded cost. That is, there exists an 
epsilon such that every arc cost is greater than epsilon. And thirdly we have a heuristic 
function h(n) which is always an underestimate of the actual optimum cost from n to 
goal. We denote that by h star n. And h star n is the cheapest cost of a path from n to a 
goal node. And our heuristic function h(n) must be an underestimate to h star n.  
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Now it can be shown that A star is optimally efficient. What do you mean by optimally 
efficient?  
For a given heuristic, given a particular heuristic function h of any optimal search 
algorithm that you could have that expand search path from the root node it can be shown 
that no other optimal algorithm will expand fewer nodes than A star on the average and 
still always guarantee in finding a solution. Hence A star is an optimally efficient 
algorithm.  
 
Secondly, we will consider a heuristic function which has the monotonicity property. 
That is, along any path the f cost never decreases. The f cost of different nodes along a 
path can only increase but it cannot decrease. So many heuristic functions h(n) satisfy 
this monotonicity property. However, even if the heuristic function does not satisfy this 
property we can easily enforce this property if we have an underestimating heuristic 
function by doing the following trick.  
 
Suppose we have a node n and m is a child of n. So f(m) is normally g(m) plus h(m) and 
at node n we have f(n). Now we can say that we will use as f(m) the maximum value of 
f(n) and g(m) plus h(m). That is, if g(m) plus h(m) is smaller than f(n) we will use f(m) is 
equal to f(n) to ensure that the monotonicity condition holds. We can do this because the 
f value of a node is an underestimate of the cost from star t to goal through this node. The 
f value of this node m is an underestimate of the cost from star t to goal through n and m. 
So, if f(n) is an underestimate of this cost we can also use f(m) here without sacrificing 
the admissibility condition. Now let us look at the proof that A star is admissible.  
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A star always finds an optimum path to the goal. Suppose g is a goal state and f star is the 
optimal path cost for the algorithm A star so we have this star t state s, g is the nearest 
goal for which there is a path whose cost is f star. And suppose we have this other goal 
G2 which is sub optimum and there is a path from s to G2 and the cost of this path is 
greater than f star. Now we will try to show that it is not possible that A star algorithm 
will find G2 first before it finds g. In order to prove this let us star t with the opposite 
contradiction that, suppose A star has selected G2 from open for expansion.  
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Suppose A star has selected G2 from open for expansion, now we have our node, this is 
my star t state, this is g and this is G2. Suppose if g is not on open there must be at least 
another node on this optimum path which is on open. So the node n of the optimum path 
must be on open. Now, suppose our algorithm A star has selected G2 for expansion and 
not selected n. If n is on the optimum path from s to g then f(n) must be less than equal to 
f star. That is, f star is the cost of the optimum path from s to g and f(n) which is an 
underestimate must be less than equal to f star. 
  
Now, if G2 is chosen for expansion and n is not chosen for expansion it must be the case 
that f(G2) is less than equal to f(n). That is, f(n) is greater than equal to f(G2). Now, 
because G2 is a goal state f(G2) is simply g(G2) because h value of a goal state is 0. 
Therefore it follows from these three conditions that g(G2) is equal to f(G2) less than 
equal to f(n) less than equal to f star that is g(G2) is less than equal to f star. So, if A star 
has to select a goal node for expansion while the actual optimum goal has not yet been 
selected it must be the case that g(G2) is less than equal to f star. But this is a 
contradiction because we just said that G2 is a sub optimal goal so this cannot happen. 
That is, when A star selects a node for expansion and if that node happens to be a goal it 
must an optimum goal state.  
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This is a sketch of the drawing. This is our s, this is g and this is the node on this 
optimum path which is on open when G2 is selected. And we just showed that f(G2) is 
equal to g(G2) which is greater than g (G) by resumption which has to be greater or equal 
to f(n) so this cannot happen. Therefore A star does find the optimum solution.  
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Now we have seen that A star is complete is Optimum. We have to show that A star is 
complete. Now suppose g is an optimum goal state what are the conditions under which 
A star is not complete?  
A star will not be able to read g only if there are infinitely many nodes for which f(n) is 
less than equal to f star. For expansion A star only selects those nodes which have f value 
is less than equal to f star. So A star will not be able to get to the goal node if there are 
infinitely many such nodes. This can only happen if either we have a node with infinite 
branching factor or we have a path with finite cost but infinitely many nodes. The first 
condition a node with infinite branching factor cannot happen because we assumed that 
the branching factor is finite.  
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The second condition cannot happen because we assumed that all our costs are bounded 
and they are always greater than epsilon. So there cannot be infinitely many nodes on the 
path. Thus A star is complete.  
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This lemma states that A star expands only those nodes whose f value is less than equal 
to f star. In fact A star expands nodes in order of increasing f values. So we star t from 
this node this star t state and A star expands node with increasing value of f values.  
 
Properties of heuristic functions:  



Suppose we have two heuristic functions h2 and h1 we say that h2 dominates h1 if the 
value of h2 at any node n is grater than the value of h1 at that node n and we can show 
that A star will expand fewer nodes on average using h two than when using h1.  
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Now let us show the proof sketch, the proof of this:  
A star with h1 is the heuristic function expands every node for which f(n) less than f star. 
So every node for which f(n) less than f star will be expanded.  
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Some nodes where f(n) is equal to f star some of these nodes will be expanded. A star 
with h2 as the heuristic will expand all nodes with f2 and f star. So, if h2(n) is greater 
than equal to h1(n) the nodes which A star with h2 will expand must be a subset of the 
nodes which A star with h1 can expand. However, depending on the execution those we 
might have some leeway for those nodes where f(n) is equal to f star. But on an average 
because A star expands those nodes whose h value is less than f star minus g(n). So, if h2 
is greater than h1 at all nodes then A star with h2 will expand fewer nodes. So A star with 
h1 is preferred to A star with h2. So long as the heuristic is an underestimating heuristic 
we prefer that heuristic function which gives a higher estimate.  
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Suppose we have identified a number of underestimating heuristics for a problem where 
h1(n) h2(n) hk(n) and so on so we can combine this multiple heuristic functions by taking 
the maximum of h1 h2 and hk. So we can find the values of h1 h2 hk at that node and 
since all of them are underestimates we can take that value which is maximum. And this 
happens to be a more powerful non overestimating heuristics.  
 
Now we will quickly look at a variation of A star which is similar like iterative deepening 
search. But instead of using a depth bound we use an f limit. Initially we star t with limit, 
the f limit is equal to h value of the star t node and then we do a depth first search. And 
we prune any node for which f value of the node is greater than the f limit.  
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We set the next f limit to be the minimum cost of any pruned node. So we star t from 
node a here we have to reach node d which is a goal node. We first set the f limit as 15 
and expand this node in a depth first manner. Then we set the f limit as 21 and we expand 
these nodes and then we change the f limit and then we expand all the other nodes. So, 
iterative deepening A star can be shown to be complete and optimal.  
 
However, because we use depth first search the space usage is proportional to the depth 
of the solution and it saves some space. The number of nodes expanded, it expands some 
nodes more than A star but usually it is of the same order as nodes expanded by A star. 
So in general if there are lots of possible f values in the search tree IDA star can generate 
square of the number of nodes that A star generates. But where many several nodes share 
the same f value IDA star will typically expand a constant order of nodes more than A 
star. 
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Therefore in 8 puzzle we have few values of f because they are all integers, all the f 
values are integers so there are a few values so IDA star is quite efficient. 
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In traveling salesman problem each f value is unique if the path costs are real numbers. 
And the number of nodes expanded will be order of n square because it would be the case 
that at every iteration one more node is expanded. So the total number of nodes expanded 
is 1 plus 2 plus 3 plus up to n which is of the order of n square. And it is very difficult, if 
we are using depth first search we really cannot detect nodes which have been expanded 



before. Therefore it is not a very good choice if we have a search graph. Otherwise depth 
first search is very attractive because the space requirement is small.  
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We will stop this lecture by quickly running greedy search as well as A star on this graph. 
We star t from star t state from a. If we do greedy search we will try to go to that node for 
which h value is smallest. Suppose we choose as h value the straight line distance from a 
node to the goal node. This is my star t node, this is the goal node in greedy search from a 
we will go to b, from b we will go to e, from e we will do g, from g we will go to the goal 
node h. and we get this path whose cost is 70 plus 15 plus 6 plus 8 is equal to 85, 91, 99.. 
This path is not optimal. Now let us take the same graph and run A star. We first expand 
node a and then we add node b to the fringe whose g is 8, h is 18.6 and f is 26.6.  
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Then we expand B and then we add C, D and E to the fringe. For c the f value is 35.1 we 
put it in the fringe, we evaluate D, f value is 35.2. Then we evaluate e with f value 27.5 
then we expand e add successors g and c evaluate g and g(n) is equal to 84, h(n) is equal 
to 8.5, f(n) is equal to 92.5. We add it to the fringe then we can take c whose f(n) is equal 
to 41.3 which is more than the f value of c which you already have on the fringe we 
discarded. And then we expand c add node f whose f value is 37. We put it in the fringe, 
then we expand d which has no children then we expand f add nodes g and h to the 
fringe. We evaluate g whose f value is 42.5 we replace the f value. Then we evaluate h 
whose f value is 39 we put it in the fringe we expand h which is a goal node and we have 
found a goal whose cost is 39 which is better than the cost of 99 which we found in the 
greedy search and this is the optimum path to this goal node.  
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