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Today we have our last lecture on machine learning. Today we will talk about 
probabilistic learning and may be discuss about computational learning theory. Earlier 
you have learnt about uncertainty and probabilities. So what we discuss now is how 
Bayesian learning can be used for the sort of concept learning tasks. 
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You have already looked at some simple machine learning algorithms that are used for 
concept learning. For example, you have studied decision trees and looked at algorithms 
for top down training of decision trees. In the last two classes we have also looked at 
neural network so mainly multilayer feed forward neural networks and we have seen how 
to train the neural networks using algorithms like back propagation so that the neural 
network can recognize the concept. Today we will see that the Bayesian learning 
framework also provides some ways of concept learning and we will also discuss the 
applications of these things as well as their limitations.  
 
Why Bayesian learning is as important framework to study?  
Firstly, Bayesian learning provides many practical learning algorithms. For example, 
today we will discuss a very simple learning called Naïve Bayes learning which is 
especially easy to learn and to train. And then we will also discuss how the surprising 
simple method works quite well for certain classification tasks and it is widely used for 
applications such as text classification and other areas. Then if you want to have more 



sophisticated methods you have already learnt about Bayesian belief networks it is 
possible to learn also Bayesian belief network. However, we will discuss that in the 
Bayesian learning framework it is possible to easily combine prior knowledge.  
 
For example, in the concept learning problem what you are trying to find out you are 
trying to learn a concept, you are trying to represent a concept and you are trying to find 
out an hypothesis which is a good representation of the concept. If you have some prior 
knowledge on which hypothesis are more likely for example we will see that the 
Bayesian framework allows you to integrate this prior knowledge into your learning 
methods so that the posterior hypothesis that you output depends on your prior 
probabilities or prior knowledge of the hypothesis. 
 
Also, Bayesian learning provides many foundations for machine learning. And the 
Bayesian description Bayesian approach can be used to evaluate learning algorithms 
including other learning algorithms. And it can be used to guide the design of new 
algorithms and it allows us to learn from models or meta learning. Bayesian learning is a 
very important concept.  
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How is Bayesian classification useful?  
Bayesian classification is useful for probabilistic learning. In probabilistic learning we 
calculate the explicit probabilities for hypothesis. For example, if you have some training 
example you can output more than one hypothesis and you can attach probabilities with 
the different hypothesis. For example, let us say you have a decision tree so in neural 
network or decision tree you give only one hypothesis. When you are giving your 
training examples you come up with one hypothesis. But in probabilistic learning 
framework it is possible to you to come with multiple hypotheses and also associate the 
confidence of probability that you have in each of these hypothesis. The second property 



of Bayesian classification is that it can be used in an incremental fashion. Each example 
can incrementally increase or decrease the probability of a hypothesis.  
 
You can find out for the posterior probability of the hypothesis and when you have 
processed a number of examples you have attached certain posterior probabilities with 
different hypothesis. For example, your probabilities can get updated incrementally. So, 
this is one advantage of Bayesian classification techniques.  
 
Thirdly, it allows you to make probabilistic prediction. That is, you can predict multiple 
hypotheses and you can associate with each of them their probabilities. Also the Bayesian 
framework provides a standard of optimal decision making. Even when you are not using 
this technique but using some other technique you can try to evaluate how well the 
technique corresponds to this model. We can try to evaluate the type of the hypothesis 
that a learning algorithm outputs whether it satisfies the different criteria that we will 
study.  
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Some basic formula for probabilities:  
For example, the product rule is used to find out the product of the probabilities of A and 
B. Now P(A and B) can be written as the product of condition of P(A by B) times the 
P(B). As this is commutative the P(A and B) is the same as the P(B and A). Therefore it 
can also be written as P(B by A) times the P(A). We can combine this expression P(A by 
B) times P(B) is equal to P(B by A) times P(A) to derive a very important learning 
hypothesis called the Bayesian hypothesis. Here are some other rules of combining 
probabilities. Sum rule allows you to find the probability of the sum of two random 
variables P(A plus B) is equal to P(A) plus P(B) minus P(A) and B or A intersection B. 
So this is called sum rule. We have the theorem of total probability. If we have events a1 
a2 an and these events are mutually exclusive then we can say that P(B) is equal to sum 
over all i’s P(B by Ai) times P(Ai). So we can condition on the different Ai’s and we can 



combine these the weighted sum to get the P(B). These three formulas are often used in 
different manipulation of probabilities. Another very important rule is the Bayes Rule.  
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This expression can be used to derive Bayes Rule. From this expression we can write the 
P(A by B) is equal to P(B by A) times P(A) by P(B). And this we can rewrite in the form 
of P(h by D) is equal to P(D by h) times P(H) by P(D). This follows from the previous 
expression that we saw.  
 
Now let us see how we can interpret this. If you take that H represents the hypothesis and 
D represents the data or evidence. So, in the concept learning problem you are given 
some training examples or the evidence and you have to find out a hypothesis which 
describes the concept. So this can be represented probabilistically as finding out for 
different hypothesis. You can consider different hypothesis and find out the probability of 
that hypothesis given the data. And you can evaluate this probability for the entire 
possible hypothesis and output that hypothesis which is most likely.  
 
What we are trying to do is evaluate the P(A) by hypothesis by data or evidence that we 
have. Now we can rewrite P(h by D) in terms of probability D by h. Why we do this 
rewriting? It is often easier to evaluate the P(D by h). So, if you evaluate P(D by h) from 
that we can find P(h by D). But we need some other factors for example we need P(H) 
and P(D). Let us see what these mean. So P(H) can be interpreted as the prior probability 
of the hypothesis H. So, before you have got any evidence you have a set of possible 
hypothesis that you are considering and you have your initial belief about the 
probabilities of each of these hypotheses.  
 
Each of these hypotheses may be equally likely or may be you consider that some of 
these hypotheses are more likely than the other. So P(H) denotes your belief about the 
prior probability of the hypothesis H and we can refer to this as the prior. Now what does 



P(D) stands for? It is the prior probability of the data D or the evidence which is not very 
intuitively clear what it means. But P(D) is the prior probability of that data.  
 
What is P(h by D) signify? It is the probability of hypothesis given the data. So after you 
have seen the evidence what is your posterior probability? What is your current belief, 
posterior belief after seeing the data about the hypothesis? This is called P(h by D). After 
you have seen some training examples D you want to find out based on this training 
example what is the probability of each of the hypothesis. And as you increase your 
training examples this will be updated. Then what is P(D by h) signify? It means the 
likelihood of the (D by h). So you have some hypothesis H.  
 
Now what is the likelihood that the hypothesis could rise to the data?  
The P(H by d) is the posterior probability is equal to P(h) the prior probability, this is the 
prior probability and this is the posterior probability. And what is P(D by h)? It is the 
likelihood of the data given the hypothesis and this P(d) is the evidence that you have. 
This is evidence and this is likelihood. You can write it as posterior is equal to likelihood 
into prior by evidence. So this is the base rule that we have P(H by d) is equal to P(D by 
h) into P(H) by P(D). Generally we want most probable hypothesis given the training 
data, the hypothesis which has the maximum posterior probability. We refer to it as hmap.  
hmap is called the map hypothesis. 
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The map hypothesis is that hypothesis for which P(h by D) is maximum among all the 
hypothesis that you are considering. We know what a hypothesis space is. It is the set of 
hypothesis which you are considering. Your hypothesis space can finite and finite but 
suppose your hypotheses is finite and suppose there are hundred hypothesis in the 
hypothesis space.  
 



You want to find out the probabilities, the posterior probabilities for each of the 
hypothesis so that you can find out that hypothesis for which the posterior probability is 
the highest. So hMAP is that value of h for which the P(h by D) is maximized. This can be 
written as argmax (h by H) included in h, h included in the hypothesis space H P(H by d).  
 
Now if we apply Bayes Rule to this expression we can substitute the right hand side of 
this equation so we can say that hMAP is that hypothesis for which P(D by h) times P(H) 
times by P(D) is maximized. Now when you inspect this expression you are trying to find 
out that value of h for which the combination of these three terms is maximized out of 
which the particular hypothesis we are considering affects these two terms but not this 
term. So, that hypothesis for which this entire thing is maximized the same hypothesis for 
which only the numerator is maximized. So a map hypothesis is a hypothesis for which 
P(D by h) times probability h is maximized.  
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Suppose you are given a learning problem and you are able to find out these different 
probabilities you would like to choose the maximum a-posteriori hypothesis hMAP and 
hMAP is given by argmax, h is included in the hypothesis space, P(D by h) times P(H). 
Now, as we discussed ph denotes the prior probability of the different hypothesis. 
Suppose that initially you consider all hypothesis to be equally likely then you can say 
that P(H) is the same for all h included in the hypothesis space. In that case Hmap would 
be that hypothesis for which P(D by h) is maximized if you consider P(H) is the same. So 
such a hypothesis for which only P(D by h) maximized is called the maximum likelihood 
hypothesis and this is called a maximum a-posteriori hypothesis. Now map and ML 
hypothesis gives you the same hypothesis if the prior probability of the entire hypothesis 
are equal otherwise they might give you different values.  
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Here is an illustration of what we mean by prior, posterior and how they affect the 
decision making. Here is a simple standard problem. In this problem your objective is to 
find out whether a patient has a malignant tumor or not. And you have the following:  
A patient takes a lab test and the result comes back positive. The test returns a correct 
positive result in only 98% of the cases in which a malignant tumor is actually present, 
and a correct negative result in only 97% of the cases in which it is not present. 
Furthermore, it is known that only 0.008 of the entire population have this particular 
tumor. So this is the data that you are given. What you have to find out is whether the 
patient is likely to have malignant tumor.  
 
Here the two possible hypotheses are; the patient has malignant tumor and the patient 
does not have malignant tumor. You have to find out whether the probability of the 
patient having malignant tumor given your evidence is higher or the probability of not 
having malignant tumor given the evidence is higher. What is the evidence? The evidence 
is that the patient takes a lab test for which the result is positive so the result of the lab 
test is positive and the lab test is taken to identify whether the patient has tumor or not. 
However, the lab test is not 100% accurate.  
 
Now you are told that, if the patient does have malignant tumor the lab tests returns yes 
only in 98% of the cases. In 2% of the cases the lab test returns wrong result. It tells you 
that you do not have tumor but actually you have tumor. Also it tells us that if the 
malignant tumor is not present then in 97% of the cases the lab test returns negative. And 
3% of the cases the lab test returns positive. Therefore based on this you have to find out 
if the result is positive how likely the patient is to have malignant tumor. In addition to 
this you are given some other data that your prior probability on malignant tumor and not 
malignant tumor are not equal. Hence, only 0.008 of the entire population has this tumor. 
That is, 0.992 of the population does not have tumor. So the prior probability of tumor is 
only 0.008 and the prior probability of no tumor is 0.992. Here is a way to proceed in this 



problem. From the description given in the previous slide we can write that P(tumor) is 
equal to 0.008 so we can write the P(tumor) is equal to 0.008 and P(not tumor) is equal to 
0.992. These are your prior probabilities. Now you are also given that, if there is tumor 
then P(lab test) being plus is 0.98 and if there is tumor P(negative result) in the lab test is 
0.02. 
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You are further given that if there is no tumor then P(plus) in lab test is 0.03 and 
P(negative) in lab test is 0.97. Now, the evidence that you are given is that the lab test 
returns positive and you have to find out the posterior probability of the two possible 
hypothesis P(tumor by plus) and P(no tumor by plus). So P(tumor by plus) can be written 
by using Bayes Rule as P(plus by tumor) P(tumor) by P(plus) and P(not tumor by plus) is 
equal to P(plus by not tumor) times P(not tumor by P(plus). Now you can evaluate each 
of these values from the data you are by 0. What is P(plus by tumor)? P(plus by tumor) is 
equal to 0.98 and P(tumor) is equal to 0.008. 
 
What is P(plus by not tumor)?  
P(plus by not tumor) is equal to 0.03 and P(not tumor) is equal to 0.992. 
 
And what is P(plus)?  
It is not known to us but it does not matter. When you have P(tumor by plus) and when 
P(not tumor by plus) we want to find out which one of them is higher. You can find out 
which one of them is higher by only evaluating the numerator. Also you know that 
probability of these two sums to 1. You know that any random variable P(A) and P(not 
A) is equal to 1. So you can take this P(plus) as some constant alpha and you can say 
alpha times 0.98 into 0.008 plus alpha times 0.03 into 0.992 is equal to 1, you can find 
out alpha and you can find the exact values of each of these probabilities.  



So you need not know the P(plus). In this problem you will see that P(not tumor by plus) 
is much higher and the reason to why this is the case is because the prior P(not tumor) is 
much higher.  
 
Prior P(not tumor) is equal to 0.992 and P(tumor) is only 002. If these two prior 
probabilities were equal then P(plus by tumor) is equal to 0.098 and P(plus by not tumor) 
is equal to 0.03 so definitely this would have been more likely. The maximum likelihood 
hypothesis is that the patient has tumor. But if we combine it with the prior probabilities 
on the hypothesis whether a patient has tumor or not tumor we see that most likely the 
patient does not have tumor. So this example illustrates to you the role that prior 
probability plays in finding out the posterior probability. 
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How does a map learner work?  
You have the hypothesis space H and you are trying to find out for each hypothesis H in 
the hypothesis space you compute the posterior probability P(h by evidence) and you 
compute it using Bayes Rule and then you output that hypothesis for which this is 
highest. So the posterior probability hmap is maximum and that hypothesis for which P(h 
by d) is maximum. This is called a map learner maximum a-posteriori probability learner. 
The Bayesian framework provides a survey of evaluating the probability of hypothesis.  
 
In practice the Bayesian method is not always possible to apply. The main reason is that 
in the particular case we considered we had only two possible hypothesis in the 
hypothesis space, the patient has tumor or the patient does not have tumor. Consider a 
case whether a number of possible hypothesis is very large. So, if you follow this 
procedure for each hypothesis you have to find out the posterior probability for each of 
the hypothesis given to it for each of the hypothesis. You have to do it for each of the 
hypothesis.  
 



If the number of hypothesis is very large it is not practical to enumerate each of the 
probabilities. Therefore this sort of rule is not applicable. But this nevertheless gives you 
a very good framework to show what is happening here. And if you study further into 
machine learning you will see that many of the learning algorithms are evaluated based 
on whether the hypothesis that they output is the maximum a-posterior hypothesis, 
whether it is a map hypothesis or ML hypothesis or whatever criteria that satisfies. 
Therefore this gives us standard for judging the efficacy of different learning algorithms 
and it can be applied when your hypothesis space is not very large.  
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So, the map learner is computationally intensive because you got to find out the posterior 
probability for each of the hypothesis. It provides a standard for judging the performance 
of learning algorithm. You can analytically find out whether a particular learning 
algorithm gives the map hypothesis or not. And, by choosing P(h) the prior reflects the 
prior knowledge about the learning task. And P(D by h) also can be computed in many 
cases depending on our knowledge about how the hypothesis affects the data. So far we 
have looked at a map hypothesis.  
 
A map hypothesis gives you the hypothesis which is most likely. In some cases it is not 
the hypothesis that you really care about but you want to really find out the class. So you 
have a concept learning problem, you are given some data, you are by a new example and 
you want to find out the class of the data. If the hypothesis corresponds to the class then a 
map hypothesis is what you are looking for. However, consider these cases, if the 
hypothesis that is returned by the map learner is applied on the instance x does it give you 
the most likely classification of the instance x? 
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It may not be the case. It depends on what form the hypothesis is in. For example, 
suppose you have some evidence D and you have three competing hypothesis. So your 
hypothesis space consists of three hypothesis h1, h2 and h3. And suppose you compute 
the posterior P(Ph1) to be 0.4 and that of h2 to be 0.3 and that of h3 to be. Now, which is 
the hypothesis with the highest posterior probability? Definitely it is h1 because P(h1 by 
D) is equal to 0.4 which is more than P(h2 by D) or P(h3 by D).  
 
Now we pick h1 and we apply h1(x). We find out that when we apply h1(x) h1 applied to 
x is plus whereas h2 x is minus h3 x is also minus. Now what is the most likely 
classification of x1? So you can just look at the examples and see that combined 
probability h1 h2 is 0.36 and they predict that x is minus whereas h1 which has the single 
highest probability predicts that x is plus but this probability is only 0.4. So in this 
example x is most likely best classified as minus. Therefore the map hypothesis applied 
to the instance does not necessarily give you the most probable classification of x. In such 
cases what we really want is to find out a Bayes optimal classifier. Now let us see what a 
Bayes Optimal Classifier is. 
 
Suppose you have different classes V so V is the set of possible plus. In your 
classification problem V is the set of possible classes. Therefore possible classes could be 
positive or negative in the case of the tumor example. Suppose you are trying to classify a 
news article as sports, politics, health and entertainment so your possible classes are 
sports, politics, health and entertainment. These are the four possible classes. So what 
you are trying to find is the class. So the class vj which is an element of V, V is the set of 
all classes and you want to find out that class in V for which this quantity for which this 
is the highest. So you have different hypothesis h1, h2 etc and all these hypothesis belong 
to the hypothesis space H. So, for each hypothesis hi in the hypothesis space you find out 
the probability that the probability of a particular value of vj sigma over all hypothesis 



P(vj by hi) into P(hi by D) so this is the posterior probability of the hypothesis hi and this 
is the probability that the classification is vj given the hypothesis i.  
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Suppose you have three hypothesis h1, h2, h3 the posterior P(h1) is equal to 0.4, h2 is 
equal to 0.3, h3 is equal to 0.3. Then what is the probability that your class is positive? It 
is p(plus by h1) into 0.4 plus P(plus by h2) into 0.3 plus P(plus by h3) into 0.3. So this is 
the P(plus).  
 
What is the P(minus)?  
Similarly, it is P(minus by h1) into posterior P(h1) plus P(minus by h2) into posterior of 
(h2minus by h3) into posterior(h3). So let us try to apply this to the particular problem we 
saw in the previous slide. We have already seen that P(h1 by D) is equal to 0.4, P(h2 by 
D) is equal to 0.3, P(h3 by D) 0.3 and h1(x) is positive that means P(plus by h1) is equal 
to 1, P(minus by h1) is equal to 0. So this is given to us and we can therefore write as 
P(h2 by D) is equal to 0.2, P(minus by h2) is equal to 1, P(plus by h2) is equal to 0, 
P(minus by h1) is equal to 0, P(plus by h1) is equal to 1, h3 classifies instance as negative 
therefore P(minus by h3) is equal to 1 and P(plus by h3) is equal to 0. So we can find out 
that P(plus by hi) into P(hi by d) over all hi's gives us 0.4. It is because there are three 
hypothesis h1, h2, h3 and only h1 classifies the positive. So this expression of P(plus by 
h1) into P(h1 by d plus by h1) is equal to 1 and P(h1 by D) is equal to 0.4 and the rest of 
the things are 0. So the P(plus) is finally 0.4 whereas P(minus) is equal to 0.6. So this is 
the most likely classification therefore the most likely classification of instance is 
negative.  
 
Therefore, once you have found out the posterior probability of hypothesis you can apply 
the Bayes Optimal Classifier to find out the most likely classification of examples. 
Naive Bayes Classifier: This is a very simple classification algorithm but quite effective 
in especially problems where the number of attributes is very large.  
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So the Naive Bayes Classifier is a popular simple learning algorithm. It works well when 
a moderate or a large training set is available. To explain the Naive Bayes Classifier we 
make a very restriction assumption and the assumption is that the attributes that describe 
instances are conditionally independent given classification. Suppose we have some 
attributes a1, a2, an for a classification problem we say that the P(a1 by c) is independent 
of a2 or of the other attributes. So the attributes are independent given the class. So this is 
an assumption that we make. This is a very restricting assumption. We are trying to say 
that this attribute features are completely independent features and they do not interact. In 
practice, in realistic learning problems it is very difficult to find examples of attributes 
whether all these attributes are independent. 
 
However, even with this wrong assumption which does not hold certain realistic 
problems the output of the Naive Bayes Algorithm in practical problem sometimes is 
surprisingly good. And there are some applications on which Naive Bayes has been 
applied and gives quite good results. For example, in certain diagnosis problems. And in 
text classification your objective is that you are given some text documents and you have 
some classes. For example, it could politics, sports, health, entertainment etc so you want 
to find out which class this article belongs to. And for this classification task Naive Bayes 
Algorithm has been quite successful in many such classification tasks. For example, there 
is a particular experiment people have performed on the 20,000 newsgroup data set where 
you have 20 newsgroups and you have 1000 documents per newsgroup. And on this 
Naive Bayes was applied and it gave a classification accuracy of 89% which is quite 
good. Now let us look at what the Naïve Bayes Classifier does.  
 



We assume that we have a discrete target function which takes you from the attribute 
space X to the class C. And suppose each instance x is described by the attributes a1, a2, 
an so there are n attributes s sub 1, s sub 2, s sub n and you have a classification from…..  
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The C is the set of classes and x is the input instance. Now what is the most probable 
value of f(x)? It is given by the CMAP, CMAP is the class which has the highest probability. 
The class C with the maximum a-posterior probability is that class cj for which the 
following maximized. P(cj) given the attributes. So you want to find out CMAP which is 
that value of cj such that cj is included in C for which the P(cj by a1, a2, an) is maximized. 
We can rewrite P(cj by a1, a2, an) as P(a1, a2, an by cj) into P(cj by P(a1, a2, an) by applying 
Bayes Rule. So P(cj by a1, a2, an) is P(a1, a2, an by cj) times P(cj by P(a1, a2, an). And since 
P(a1, a2, an) does not depend on cj we can say that CMAP is that class for which P(a1, a2, an 
by cj) times P(cj) is maximum. So CMAP is that class cj for which P(a1, a2, an by cj) times 
P(cj) is maximum.  
 
The P(cj) we can estimate from either we can have prior belief or we can estimate from 
the data that we have given. If you are given some training examples and the training 
examples we find out the proportion of examples belonging to the different classes we 
can estimate P(cj). Now the difficulty is to find out value of this expression: P(a1, a2, an 
by cj). This is a joint P(n) attributes. Now if we want to estimate the joint probability 
from the training data we will require a very large number of training data. It is because 
we have n attributes. Even in the simplest case when each attribute is Boolean that is each 
attribute can take two different values the number of combination of a1, a2, an is 2 power 
n. So the number of such joints is very large.  
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We look at all combinations of the attribute values; the number of such combinations is 
very large. Now in order to estimate for each of them the probability requires very large 
corpus and also requires a large number of the values that you have to store and this is 
clearly not doable when n is large. Therefore in the Naïve Bayes assumption we make a 
very simplifying assumption.  
 
We assume that P(a1, a2, an by cj) is the product for P(ai by cj). We assume that (a1, a2, an) 
are conditionally independent given cj so this can be written as P(a1 by cj) times P(a2 by 
cj) times P(... an by cj). So we can write P(a1 a2 an by cj )as product of P(ai by cj over all 
i’s. Therefore C Naïve Bayes is that class for which this times P(cj) is maximized. So CNB 
is the class cj which is a member of C so that product over i P(ai by cj) into P(cj) is 
maximized. This is the Naives Bayes Classifier, it works under the assumption that the 
attributes are conditionally independent of each other given that we know the class. A 
recap: In Bayesian classification the classification problem may be formalized using a-
posterior probabilities.   
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We want to find out P(C by A) probability that the sample tuple is of class C. You are 
given an instance X and you want to find out the probability that instance belongs to 
class. For example, suppose you want to know given the attributes of a particular day 
whether it is a good day for playing. Suppose you are given that the outlook of the day is 
sunny, windy and so on I want to know whether it is a good day to play or bad day to 
play. So there are two classes yes and no. Therefore the idea is you want to assign to the 
sample X the class label c such that P(C by X0) is maximum. This is the problem we were 
trying to solve and Naives Bayes Classifier is one way of getting the solution provided 
the independent assumptions hold provided these attributes are independent given the 
class. And outlook and windy does not depend on each other so whether it is sunny or 
cloudy does not affect whether it is wind or not which may not be true.  
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We have seen how to estimate a-posterior probabilities by using Bayes Theorem. Bayes 
Theorem is stated as P(C by X) is equal to P(X by C) times P(C) by P(X); P(X) is 
constant for all classes and therefore we want to find out that class for which P(X by C) 
into P(C) is maximum. But we cannot compute P(X by C) because X is an instance which 
depends on potentially a large number of attributes and if you to estimate each of these 
possibilities the number of such possibility will be very large. So in Naïve Bayes 
Classification we have made a very restrictive assumption a naïve assumption which says 
attributes are independent. That is P(x1, x2, xk by C) is product of P(x1 by C) (x2 by C) (xk 
by C).  
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Suppose xi is a categorical attribute then how do I estimate P(xi by c)? What we can do is 
we can look at the training examples and find out for a given class how many times xi has 
a particular value. So P(xi by c) can be estimated from the training corpus as the relative 
frequency of those training examples that have value xi as the ith attribute in class c. But if 
your attribute is continuous, suppose you have an attribute like temperature which takes 
continuous values then (exi by c) is often estimated by assuming a probability distribution 
for these attributes. For example, often we assume a Gaussian density function from 
which P(xi by c) can be estimated.  
 
A recap: Naïve Bayes Algorithm works like this. In Naives Bayes learn you are given 
some examples. For each target value vj you estimate P(vj). Suppose you have this news 
group classification or news classification you have four classes sports, politics heath and 
entertainment. Now, for each of these classes you estimate P(vj) by looking at the corpus 
and finding out how many news you have from sports, how many from politics, how 
many from health, and how many from entertainment. So, from this you can estimate 
P(vj). Now for each attribute value you can estimate P(ai by vj).  
 
So vj is sports, you find out how many times this attribute a1 is true or a1 has a particular 
value. In a document classification we often use the words in the document as features. 
So we look at the set of words that occur in the document. So we want to know how 
many times the word referee is in a document given that it belongs to a sports domain or 
how many times the word referee is in the document that belongs to entertainment 
domain or the health domain. 
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For each attribute or each word that we are considering we can find out how many times 
that attribute takes a particular value for those documents that belong to that class. From 
this we can estimate P(ai by vj). Once we have estimated for all j P(vj) that is for all class 
the probabilities and all conditional P(ai by vj) we can use those values to classify a new 



instance. So the most likely classification of the new instance given by v is that value of 
vj for which P(vj) into product of (pi by vj) for all Ai is maximum. This is Naive Bayes 
formula for classifying a new instance.  
 
So how do I compute the P(ai by vj)? 
P(ai by vj) is, suppose n denotes the number of examples in your training set for which 
the class is vj and nc denotes the number of examples in your training set for which the 
class is vj and for which Ai has this particular value that is the attribute has the value of i. 
So P(ai by vj) can be estimated nc by n. However, this sort of estimation has a problem. It 
could be that because you do not have sufficient number of examples in your corpus in 
your training data there is no example with class is equal to vj in attribute is equal to Ai in 
which case this probability will be 0. And because of you are taking the product of 
different probabilities if one of the probabilities is 0 the entire value would be 0. 
Therefore in order to avoid this problem we do some form of smoothing. So, to ensure 
that the numerator is not 0 we add p which is the prior estimate for P(ai by vj). 
 
(Refer Slide Time: 56:57) 
 

 
 
So we ensure the prior estimate is greater than 0. And if m is the weight given to the prior 
estimate then we add mp to the numerator and m to the denominator. So this is the 
smoothed value of P(ai by vj) to ensure that this never goes to 0. In practice we take p to 
be a very small value and m is the number of your examples. So let us just illustrate it 
with an example. Suppose we are given the following data: 
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Suppose we have some training set and in the training set we have the data where we 
have the different attributes of a particular day. For example, what is the outlook of the 
day? Is it sunny or overcast or raining? Is the temperature hot mild or cool is the humidity 
high or normal is that windy or not? And we want to know whether it is a good day for 
sport or a bad day for sport. And from the data we find out from the P(ai by vj). If it is 
sunny then the P(good day) is equal to 2 by 9 and bad day is 3 by 5 and so on. So we get 
this data of P(ai by vj) and when we are given a new instance the new instance is 
described by the values of the attributes. 
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In this particular instance outlook is sunny, temperature is cool, humidity is high and 
wind is strong and we want to find out whether it is a good day for playing tennis or a bad 
day. I have fourteen examples in my training set and nine of them are good days five are 
bad days so P(yes) is equal to 9 by 14 P(no) is equal to 5 by 14 and then we use the value 
of the previous table to find out the Naïve Bayes example. The independence hypothesis 
we make in Naive Bayes makes computation simple but is seldom satisfied in practice.  
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And if we realistically want to model the problem we have to use joint probabilities 
which are not feasible. But the way out is to use Bayesian networks. You can have 
algorithms for learning Bayesian networks.  
 
 
 
 
 
 


