
 Artificial Intelligence
Prof. Sudeshna Sarkar

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 37
Learning Using Neural Networks - II

Welcome, today we have a second lecture on neural networks. In the last class we had an
introduction to neural network and we discussed linear threshold units or perceptrons and
we looked at how to train neural networks using linear threshold units.

(Refer Slide Time: 1:13)

(Refer Slide Time: 1:16)

The objectives of today’s lecture are as follows:
The student will learn what the limitations of single layer perceptron networks are. We
will introduce multilayer networks. The student will become familiar with a sigmoid unit
and the properties of neural network unit which uses a sigmoid function. The student will
learn how gradient descent works with sigmoid units.

(Refer Slide Time: 1:52)

Multilayered neural network with sigmoid units will be introduced. The back propagation
algorithm will be described which is used for training multilayered neural network. The
student will also be exposed to several issues in designing a neural network. For example,

selecting the topology or architecture of neural network and tuning the various
parameters so that the network is able to work on a given problem.

(Refer Slide Time: 3:07)

A neural network is a system which has been inspired biologically. We have a network
of simple processing elements which are connected to each other via weighted links. The
inputs are fed to the input units and as a result of the computation done in these units the
outputs are produced.

Some uses or applications of artificial neural network ANN:
ANNs have been used for recognizing hand written letters, for predicting on-line the
quality of welding spots, for identifying relevant documents within a corpus that is a
large number of documents, the visualization of a high dimensional space and tracking
on-line the position of robot arms.

There are many uses that neural networks have been put into. These are a few of the
utilities of neural network. When you are doing machine learning usually you will be
given some problem. And you will have to find out what learning method is appropriate
for tackling the problem. We have looked at a few learning methods namely the decision
trees as well as now we are looking at neural networks. There are many other learning
methods which have been used. Normally when you have a real life problem which is
posed to you then you have to decide which learning method to apply. You have to guess
which learning method will be most appropriate for a given type of problem.

(Refer Slide Time: 3:52)

Usually what are the types of problems for which the ANN can be considered an
appropriate to reply?
Usually the problem is when we have got a lot of training data but we do not have a very
good model of the data. Those are the problems for which we can apply artificial neural
network. So problems that we cannot mathematically analyze or find a mathematical
model to model the problems but we have a enough data then using neural networks is a
good idea to model such problems. Neural networks also achieve nonlinear
multidimensional input output mapping where the linear modeling does not work.

(Refer Slide Time: 6:22)

And also, if we are trying to model a problem with neural network we have to spend
some time in finding appropriate network and training the neural network. So, even after
we have decided to use a neural network it will take some time to tune the neural network
topology as well as parameters as well as the training of the networks. So, some time will
be spent doing that. Neural networks are also able to handle noisy training data very well.

Decision trees are very good for data which is not always noisy, a lot of the data is
nominal and when we require learn a function which humans can interpret and
understand or rules that we can understand. In neural network when we get a hypothesis
the hypothesis is represented by a set of weight values. So the rules are not symbolically
or understandably present to the human user. This is the reason why neural network
methods or often referred to as black box methods because we cannot interpret easily the
rules that neural networks learn.

(Refer Slide Time: 7:45)

We looked at linear threshold units where we have a sigmoid unit which does a weighted
summation of the inputs followed by application of a thresholding function or a step
function.

(Refer Slide Time: 8:05)

We also looked at, if we have a function which is continuous and differentiable how we
can use Gradient descent to find out the set of weights for which the function has
minimum error. So, if we have a thersholding unit which is a non differentiable function
we will not be able to Gradient descent. But if we have simply the linear function,
suppose we just have this summation unit and no thersholding unit in that case we can do
Gradient descent on the weight surface and try to find the set of weights for which the
error is minimum.

(Refer Slide Time: 9:00)

Linear units or even linear thersholding units are able to classify correctly those instances
which are linearly separable. For example, here we have a set of points A and B. the A
are the positive examples, B are the negative examples and we can find a line which
separates the A points from the B points. Such problems can be tackled effectively by
linear units or linear thresholding units.

(Refer Slide Time: 9:48)

However, there are problems where the decision boundary is not linear where the linear
decision boundary does not exist. In that case we will not be able to find a linear decision
surface. Suppose we try to find a linear decision surface we might be able to find some
surface and we will notice that there are some errors like we are trying to separate the
green balls from the pink balls. On the right hand side there are some green balls. So we
have not been able to achieve correct full separation of the positive points from the
negative points.

So what sort of decisions surface would we need in this case?
Suppose we had a decision surface which looked like this suppose we had this decision
surface it can account for most of the pink points. It can separate most of the pink points
from the green points even though there is one left over. So we can have the union of
these two decision surfaces or we can only take this decision surface and ignore this
smaller decision surface and treat it as noise. But in order to represent this decision
surface a linear thresholding unit is not good enough.

(Refer Slide Time: 11:21)

Decision regions: when we have a decision region where all the positive points are have
this sort of shape that is all the positive points can be separated by a single line in those
cases a linear perceptron does work. For problems like the exclusive OR we cannot have
a good separation by a linear thersholding unit. There are problems when regions are
meshed. And for such problems also we cannot use linear thresholding units. This is
another example for problem. There we have two regions and with a hole in the region.
So, only this portion is positive and the rest of the region the green region is all negative.
So such problems cannot be separated by a linear unit and then problems where there is a
positive region separated by negative region they also cannot be handled effectively by a
linear thersholding unit.

(Refer Slide Time: 12:42)

The Boolean XOR function is one function which cannot be represented by a single
linear unit. However, if we arrange the linear thersholding units in two layers, in this unit
we compute x1 and x2 and here we can compute a XOR by setting these weights. So using
these two layers of units we can compute the XOR function. So if we add a layer to the
network that gives us computing power and which lets us go beyond linear decision
surfaces.

(Refer Slide Time: 13:59)

Multi-layer feed forward network: In multi layer feed forward network we have an input
layer where the inputs are feed in, we have an output layer where the outputs go and

within we have hidden layers. These are called the hidden layers which are not visible at
the output and where the inputs also do not fit in. The hidden layers are the ones where
this no input output but they help in computing the function at the output.

(Refer Slide Time: 14:40)

So, if we had a hidden layer what can we represent? If we had one hidden layer that is if
we have a two layered neural network such a network can represent any Boolean
function. Any Boolean function can be represented by a two layered network. Any
continuous differentiable function can be represented by a three layered network. That is
the network with one output unit and two hidden units. Geometrically if we have one
hidden layer that is a two layered neural network having one hidden layer we are able to
separate positive regions that come within a convex hull.

Suppose the green region is the negative region the pink region is the positive region and
the positive region can be enclosed by a convex hull such a separation can be learnt if we
have one hidden layer. if we use a two layered neural network comprising a perceptron
they can model such learning problems. However, perceptrons are not easy to learn using
gradient descent.

When we use a thersholding function because the thersholding function is non-
differentiable we cannot use gradient descent if you are using perceptrons. Today we will
look at the sigmoid function which is differentiable and using which we can learn
functions that can be represented by convex hulls. If we have a two layered network then
we can learn a collection of convex hulls. For example, suppose we have a problem
where let us say the positive region is mapped by a number of convex hulls, so this is the
positive region given in pink and the rest of the region is negative region given in green.
Therefore such a decision surface can be learnt by a neural network having two hidden
units. In the first hidden unit you can learn the individual convex hulls and in the second
unit we can combine them.

(Refer Slide Time: 17:41)

Therefore when we use a two layered neural network most problems can be represented.
In theory if we add more than two hidden layers it does not gave us any representational
power. But merely the fact that the two layered network or a three layered network has a
certain expressivity it does not mean that the learning problem is simple.

Given a learning problem one has to find out how many layers are needed for solving the
problem and for each layer how many hidden units are needed, after that the training has
to take place. Therefore when we go for multilayer neural network the training does not
guarantee that we are able to learn the optimum network. So, the problem remains hard
but a lot of problems have been solved successfully by neural networks.

(Refer Slide Time: 19:11)

We discussed linear threshold unit and said that they can represent many types of
functions but they are not trainable by gradient descend. We looked at linear units we
charge differentiable. Unfortunately when we want to go for multilayer neural networks
and if we take several linear units together we do not add to representational power.

(Refer Slide Time: 19:51)

So, if we add several layers of linear units what we get is in effect another linear unit.
Therefore it does not have the power to represent all types of decision surfaces. So, the
type of functions we can represent by multilayer neural networks in a linear unit is [……]
19:55. So there are other activation functions that we can consider.

(Refer Slide Time: 20:51)

We do not want to use linear threshold unit because it is not differentiable so we will try
to use functions which are continuous and differentiable and at the same time which give
us representational power. Hence the two such functions are; the sigmoidal function
represented as y is equal to 1 by 1 plus e power minus h by p and the radial function or
the Gaussian function which is given by y is equal to 1 by 2 by sigma e power minus h

square by 2 sigma square.

(Refer Slide Time: 21:03)

So the sigmoidal function and the radial function are examples of two functions which
people have used in multi layer neural network. Sigmoidal function: The sigmoidal

function has a shape which looks like this: So, as we can se it is an S shaped function but
it very closely resembles the step function with the exception that it is continuous and
differentiable. This is very similar to the state function. The Gaussian function on the
other hand gives us a bell shaped curve which is also used in representing neural network.
So this is the sigmoidal function again; y is equal to 1 by 1 plus e power x.

(Refer Slide Time: 21:48)

The sigma x is the sigmoidal function and if we differentiate sigma x with respect to x we
get, you can do the differentiation, it is an algebraic manipulation and you will get that
ddx(sigma x) which is nothing but sigma x into 1 minus sigma x.

(Refer Slide Time: 22:15)

The mathematics becomes much simpler when we deal with sigmoid function because
not only it is differentiable but we can express it in the form of a function itself. So the
sort of unit we use for a neural network is called the sigmoid unit as follows: There is a
summation unit followed by the application of the sigmoid unit. The summation unit
computes sigma wixi and the sigmoid unit computes sigma of this quantity. Hence if net
is sigma wixi the output is sigma of net which is 1 by 1 plus e power minus net that is 1
by 1 plus e minus sigma wixi.

(Refer Slide Time: 23:28)

Now a more general form of sigmoid function is this; 1 by 1 plus e power minus net

minus theta by tau. Here theta is the threshold. If theta is equal to 0 the S shaped function
we get is placed around origin. If we put theta as some other value we will be able to give
a shift to this function. And tau 1 by 1 plus e power minus net by tau where tau is a sort
of stiffness cost and varying the value of tau we can vary the slope of function that we
get. For example, if tau is equal to 1 this pink curve shows us the resulting sigmoid
function. If tau is equal to 0.1 then we get this white curve which is steeper than the curve
with is equal to 1. So, if I make tau less than 1 we get a function which more closely
resembles the step function. So tau controls the slope of the sigmoid function.

(Refer Slide Time: 24:42)

Smaller the value of tau higher the slope, theta controls the horizontal offset of the
function in a way is similar to threshold neurons.

(Refer Slide Time: 24:42)

Sigmoidal neurons can accept any vector of real numbers as input and they output a real
number between 0 and 1. A network of sigmoidal units with m input neurons and n
output neurons realizes a function that maps r power m minus 0 1 power n.

(Refer Slide Time: 25:21)

Now let us see how we can train using gradient descent. We have seen that d sigma x dx
is equal to sigma x into 1 minus sigma x. Now we will try to derive the gradient descent
rule when we have a single layer of sigmoidal units. Now what we will try to do is we
will define the error function and try to find out the partial derivative of the error function
with respect to each value of wi and we will try to compute those values. And we will see
that value is equal to minussigma over all training instances d td minus od into od into 1
minus od into xi. Here td is the target value of the dth training example and od is the actual
output that we get using the neural network and xi is the ith input to which the
corresponding weight is wi.

(Refer Slide Time: 26:43)

Now here is the derivation for this:
Del e by del wi is the partial derivative of the error function with respect to wi is del del
wi and e is written as 1 by 2 (td minus od) whole square sigma summation(td minus od)
whole square. So this is the half of the sum of the square error this is the definition of
error function. Now, if we differentiate it with respect to wI, first of all we can do some
arithmetic manipulation we can bring half outside the sigma and we get 1 by 2 sigma del
del wi (td minus od) whole square. Then differentiating this we get two into td minus od
times del del wi td minus od by change of a variable we get this. Then what is del del wi(td
minus od)? It is minus del od by del wi because td does not depend on the wi. But od
depends on wi because od is obtained by doing this summation and then the sigmoid. So
we have sigma summation of od td minus od into del od by del wi. Now del od by del wi we
can write using the chain rule as del od by del netd times del netd by del wi. And we can
simplify this further; del od by del netd.

(Refer Slide Time: 28:38)

What is od?
od is nothing but sigma netd. So del(sigma netd by del netd) is nothing but od times 1
minus od because this is a sigmoid unit. And what is del netd by del wi? netd is nothing
but the dot product of w and x sigma wixi and netd is w. xd del wi. Now you see that in the
w. xd we have w0x0, w1x1, w2x2 but now none of these terms depend on wi except the
term from wixi. So this is nothing but xi for the dth training example. Therefore ultimately
what we get is that the partial derivatives of the error function with respect to the weight
wi is minus of sigma over all training examples td minus od into od into 1 minus od into xi
d.

So this is the slope with respect to a particular weight wi. We can find with partial
derivative with respect to all the weights and we can find the components in all directions
of this slope so we can compute the slope. Once we compute the slope in gradient descent
what we do is we find the direction opposite the slope. We want to climb down so we

find the negative of this slope and we take a step in that direction. Now let us see how to
train the weights of network. The basic idea is that we will use continuous differentiable
activation function which is represented by a sigmoid unit.

(Refer Slide Time: 30:39)

We will use the idea of gradient descent on the error surface and we will try to extend this
to multiple layers.

(Refer Slide Time: 30:49)

So this is a schematic diagram of multilayer network with an output layer, input layer and
hidden layer. Here also we have two hidden layers.

(Refer Slide Time: 31:05)

We have been able to derive the gradient descent rule in one sigmoid function and we
have seen that del e by del wi is minus of sigma by d td minus od into od into 1 minus od
into xi.

(Refer Slide Time: 31:15)

Now, what if we have multiple layers of sigmoid units? If we have multiple layers we
will use a technique which we call back propagation. Now, we will give the back
propagation algorithm but before we do that we will try to give you simple idea of what
is back propagation and how it works. So the basic idea is that, suppose you have some
input units here and you have some outputs here and then you have some hidden layers

here. Now, let us look at the output unit. When do you change the weights on the
different arcs that lead to the output? We only change the weights if the output we get
from the network does not agree with the target output. So, at the output unit we are able
to recognize if there is some error.

Error is recognizable at the output unit and we can try to change the weights of the
different arcs that lead to the output unit. We change the weights so that this difference
between the target value and the output value is minimized. But if you have two layered
neural network how we know that there is an error at the hidden unit. And how do we
update the weight values because we do not know the target value at the hidden unit. At
the output we know what the target value is.

At a hidden unit we do not know what the target value is. And if we do not know what is
the target value we will not know what the error is and we will have no basis for
modifying the weights. So the basic idea behind back propagation here is that whatever
error you observe at the output you try to allocate the error to the hidden units. If there is
no error at the output that means both the outputs have no error you assume that there is
no error at the hidden units also. But if there is some error here you try to allocate the
error back to the hidden units from which it receives the input.

Similarly, if you have an error at this output unit you allocate this error to the units from
which it receives input. So we propagate the error from the output backwards to the
hidden units. So how we allocate the error? We allocate the error in proportion to the
weights. So, once we allocate the error we know the target value that we have to
minimize and therefore we are doing gradient descent. So this is the basic idea of back
propagation.

(Refer Slide Time: 31:15)

Back propagation algorithm:

In the first step we initialize the weights to some small random values. We first decide a
topology of neural networks which has some arcs with each arcs there are some weights,
we give them small randomly selected values. After that we feed the training example to
the network. We take each training example and input it to the network and we compute
the network outputs ok for each output unit k. And then we will do gradient descent with
back propagation.

For each output unit k we compute delta k to be ok into 1 minus ok into t k minus ok. For
each hidden unit h we compute delta h to be oh times 1 minus oh times sigma wh delta k.
Therefore each hidden unit takes the burden of some of the error at each of the output
units to which it is connected. So delta k is what is coming from the kth output unit and
whk is the weight of the arc connecting this hidden unit with the kth output unit. So we
compute delta k initially at the output nodes then at the node above the output node then
at the node above that and so on.

So, after we have computed delta k at all the units such as the output units as well as the
hidden units then we update the network weight as follows: wij is updated as wij plus
delta wij. and delta wij is equal to eeta delta j times xij. Therefore the actual algorithm is
quite simple to implement. so there is an initialization phase, after that there is a feeding
phase where the training examples are fed to the neural networks and then at each unit
starting from the output up towards the input we compute the value of delta i and then we
modify the network weights and then we continue if the network is not satisfactory. So,
in back propagation we do gradient descent over the entire network weight vector.

(Refer Slide Time: 38:45)

This back propagation can work not only for a neural network with one hidden layer but
neural network with any number of hidden layers. In fact it can work even though we do
not have layered neural networks but neural networks in the form of acyclic directed
graph. We can still do this back propagation algorithm. The basic idea is that we start

from the output and then find the delta value at those notes and then we find the delta
value of those nodes for which downstream of the entire delta values have been
computed.

Therefore we compute the delta values backwards and then we can do the weight
training. So, back propagation is not an optimum algorithm. By doing back propagation
you cannot guarantee that the weight vector that you arrive at is the best weight vector.
But in practice back propagation often works well. In fact what you can do is if you run
back propagation once with some initial input values and you get a network which does
not satisfy you completely you can still run back from back propagation several times
with different initial weight values. There are some variations to back propagation.

(Refer Slide Time: 40:23)

Apart from the delta term that is eeta delta xij some people add another term called the
momentum term.

What is the momentum term?
Momentum term takes contribution from the previous value of delta wij.

Why is the momentum term used?
Sometimes what happens is because there is a local minimum and as a result of back
propagation the system may have a tendency to get stuck in the local minimum. So this is
the local minimum and there is a scope of going further down in the error surface. So, to
prevent your current weight vector to get stuck at the local minimum what we do is we
keep track of what is the previous direction in which the error surface is moving.

Even if we get stuck in the local minimum we try to have the momentum of the fall so to
the new delta wij value we add the value of the previous slope so that our weight function

can escape from the local minimum. So, by using the momentum term we can minimize
the error in training examples.

Now what we will do is we will study several issues concerning neural networks. For
example, we wish to know that suppose we have trained a neural network using our
training example how to find out whether works very well for unseen training examples.
Secondly, one thing we have to keep in mind when we use neural networks is that usually
neural network training time can be quite high because we need several thousand
iterations for training to converge. However, if we are able to train a neural network
using the neural network is very fast. The feed forward nature using the neural network is
very fast. Normally when we use a training example which we use for learning as training
time increases the error reduces as shown by this graph.

(Refer Slide Time: 40:23)

With time as we train more and more typically the error reduces. However, as we noted
when we looked at decision trees if we look at new examples which we do not use for
training then with them the error curve may be different. For example, with the new
example usually error reduces some time and then the error starts increasing and this is
due to over-fitting.

We would like to detect when the error is at minimum and we would like to stop at the
point where the error on the test set is minimum. Now how to detect this point? As we
have done earlier what we can do is we can have a separate validation set or test set to
decide when to stop training the network. Now suppose we have three points; if we have
a very simple function connecting these three points often there is a greater chance that
such a function can fit unknown examples better.

(Refer Slide Time: 44:56)

If you have more complex functions as fitting the points such a function maybe over-
fitting the data. Similarly, when we consider artificial neural networks sometimes we
have to look for the simplest neural networks that can reasonably fit the data rather than a
very complex topology which is able to fit the data perfectly. So, in a neural network
when we have too few neurons that is if you have too few hidden units the network may
not have enough degrees of freedom to precisely approximate the desired function.

(Refer Slide Time: 45:46)

But if the network has too many neurons it will learn the training examples perfectly. But
due to these additional degrees of freedom it may be over-fitting the data. So it may be

showing impossible behavior for unknown inputs. So when we design a neural network
we have to be careful about that. Some other problems of neural network is that there are
many parameters to be set. Suppose we are using the sigmoid function we have to decide
the threshold of the sigmoid unit function, we have to decide eeta which is the learning
rate, we have to decide alpha, the term associated with the momentum, we have to decide
number of hidden units, we have to decide number of hidden layers and so on. Therefore,
in a neural network using a neural network takes a lot of time as you have to experiment
with all these and try to find a good network to fit your data. And coupled with this is the
long training time. For each configuration that you have to take you have to train it and
training time is typically quite long.

(Refer Slide Time: 47:13)

What are the design steps for an artificial neural network?
First you have to set the architecture for the neural network that is you have the inputs
and number of outputs, you have to decide which inputs to take how many outputs to
take, number of hidden layer that you have, the number of neurons that you will have in
each hidden layer then you have to run your gradient descent algorithms to optimize the
weight vector values and finally you test the network and if the success and the network
is satisfactory then you are done but if the network is not satisfactory then you have to go
back to the previous steps so that you try with different values of parameters and may be
even different topology.

(Refer Slide Time: 48:00)

There are a lot of parameters we have to decide when we are working with the neural
network.

(Refer Slide Time: 48:03)

And as we said over-fitting can usually occur. When do you terminate training? So
normally you stop if the error fails to improve or you stop if the rate of improvement
stops below a certain level.

(Refer Slide Time: 48:16)

Or you stop if the error reaches an acceptable level or you stop when a certain number of
epochs have passed.

(Refer Slide Time: 48:37)

