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Welcome to the next lecture on Artificial Intelligence. Earlier we looked at the paradigm 
of machine learning and we discussed different learning problems. And specifically we 
talked about what concept learning is and we mentioned that different algorithms can be 
used for the concept learning task or for classification task. In the last two classes we 
discussed a particular type of learning algorithm which is induction using decision trees. 
We looked at algorithms to learn decision trees from data.  
 
Today we are going to look at another model using which we can do concept learning. 
The model that we will talk about is actually a general model and different variations of it 
can be used for many other tasks. What we are talking about is the connectionist 
paradigm which is used and which is more commonly known as neural networks. We 
will first briefly discuss what a neural network is and then we will see how some types of 
neural networks can be used for the concept learning task.  
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The instructional objectives of today‘s lecture are as follows:  
The student will be introduced to the neural network framework. They will learn about a 
linear threshold unit or a perceptron which is a very simple model of neural network. The 
student will understand the type of functions that can be represented using a perceptron. 
The student will learn how a perceptron can be trained given some data to fit the training 
data.  
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And then they will learn how radiant descent can be applied in order to learn a perceptron 
to learn a simple linear unit. They will see that the gradiant descent learning minimizes 
the sum of the squared error for a linear unit. And we will also introduce the students to a 
sigmoid unit which we will use as a basis for multilayered neural network. So, neural 
networks are actually different paradigm for computing just like the conventional 
computers that you have studied is based on the Von Neumann framework of computing.  
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The neural networks is based one a slightly network different idea of computing. This 
paradigm has been inspired biologically by trying to emulate the parallel architecture of 



human and animal brains. So, a neural network system comprises of many units which 
work in parallel. These units are individually simple units but together they can be varied 
to perform more complex tasks.  
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So the main highlights of this framework are:  
There are many simple processing elements, there is a high degree of interconnection 
between these processing units and there are simple messages which have been 
transferred to this interconnection and the interaction between these different elements is 
adaptive. This is the essence of the neural network paradigm. Let us look at the history of 
neural computing. In 1943 McCulloch and Pitts did some work which is usually 
recognized to be the first work on neural networks.  
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In 1949 the first rule for learning neural network was devised. In 1969 Minsky and Papert 
published a paper which highlighted the computational limitations or representational 
limitations of a perceptron unit. This leads to a stop of virtual decline in research world in 
artificial neural networks. Fortunately the 1980s saw a re-emergence of interest in 
artificial neural network and many researchers came up with more complex architectures 
in the form of multilayer networks that overcome the limitation of the perceptrons. And 
today research in the area of neural networks is quite active and they have been used or 
being used in a variety of application areas.  
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Now let us very briefly look at the difference in the architecture of conventional 
computing and neural computers. Conventional computers are known for the fast 
computations or fast arithmetic the number crunching that they can do and they are very 
good for delivering precise algorithmic solutions. Precise algorithmic solutions can be 
programmed in a conventional computing model.  
 
On the other hand, the connection is paradigm and is very good for handling noisy data, 
for taking into account the massive amount of parallelism between different processors 
such computation are called fault tolerant and they are adaptive. The connectionist 
framework has been biologically inspired by the structure of animal or human brains. We 
all know that humans and animals are extremely intelligent and can do certain tasks 
remarkably well. And so far sophisticated computers have not been able to come up to 
the level of human or even animals in performing certain routine tasks. In the beginning 
lectures we looked at some such tasks as computer vision, image recognition, speech, 
language understanding and so on.  
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Therefore many cognatic scientists and psychologists or any other people have 
extensively studied the brain in humans and some other animals. But it is really very 
complex like many other biological structures and functions. It is a very complex unit and 
it is very difficult to understand the brain completely. Actually the brain is composed of a 
number of units known as neurons. These neurons are also individually very complex 
units and together they constitute the brain. Therefore the basic structure of a neuron or 
nerve cell which occurs in the brain as well as in the other parts of the body is described 
in this diagram. 
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The neuron has a nucleus and a cell body and the tail called axon. There are dendrites 
which are units that out from the cell body and at the end of the dendrites there is a 
synapse through which communication takes place between different neurons.  
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Some salient features of the human brain:  
10 power 10 neurons, each neuron has several thousand connections, neuron switching 
times are of the order of 10 power minus 3 seconds that is 1 microsecond and neuron can 
perform hundreds of operations per second, also neurons die off frequently and some of 



them are never replaced. These are the salient features of human brain. And we all know 
the sort of tasks that human brain can perform.  
 
For example, we are very good at recognizing faces and typically recognizing faces takes 
us an average of 0.1 seconds. Now let us try to contrast this with the structure of what we 
have been able to achieve in modern computer. And we will notice that even though the 
number of gates or transistors in a modern day computer is large it is less than what you 
find in a human brain. However, the switching time of the devices that make up a 
computer are very fast and our processing elements can work faster than the processing 
units in the brain.  
 
Salient features:  
The brain is good for pattern recognition, for association like faces with names, 
complexity and they can tolerate noise to a large extent. A modern day computer or a 
machine On the other hand, is good for calculation for precise answers and for being able 
to apply logic on rational process.  
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The Von Neumann architecture used in conventional computing usually comprises of a 
single processing unit which can perform tens of millions of operations per second and 
the arithmetic precision is very high. On the other hand, the human brain consists of 
many slow unreliable processors that act in parallel. And we know that the brain is still 
capable of doing many complex tasks. The idea between the connectionist paradigm is to 
try to emulate this structure of the brain and to devise a computing paradigm is wired by 
which can perform complex tasks using this sort of brain work.  
 
Neural network comprises of many simple processing units. So we will first study a 
simple processing unit which we call perceptron and we will discuss what a perceptron 
can represent and how a perceptron can be learnt. So the unit that we are describing now 



is called a perceptron or a linear threshold unit. In a linear threshold unit the unit can take 
a number of inputs. And x1 x2 up to xn are the different inputs to this unit. These inputs 
are connected to this ltu by some arcs and there are ways associated with each of these 
arcs. For example, this arc has a weight of w1, this arc has a weight of w2 and this arc has 
a weight of wn. Now here what this unit does is it finds out the weighted sum of these 
inputs that is w1x1 plus w2x2 up to wnxn and this input performs the function of 
thresholding. So this unit finds a weighted sum of inputs and then it applies the threshold. 
If the sum is greater than a threshold then the output of the perceptron is 1 otherwise the 
output of the perceptron is minus 1.  
 
So this summation unit is followed by a thresholding unit. In this thresholding unit the 
threshold is applied. This threshold can have a special input x0 which is equal to 1 and 
associated with it we can have a weight w0 for which we have to adjust to get the 
threshold. So this entire unit really computes this function sigma wi xi for i varying from 
0 to n and if this summation is greater than 0 then the output is 1 otherwise the output is 
minus 1. So this is the simple linear threshold unit. so this part is the linear part which 
computes the sum and this part applies a non linear step function on this sum and the 
output from this unit is either plus 1 or minus 1.  
 
So, typically in a neural network we have inputs. We can have more than one input. 
These inputs are fed to the network through what is called the input layer. And then each 
of these things is the output. The outputs are known as the output layer. To compute this 
output these inputs are fed to the outputs through these connections. In this case there are 
six inputs and all these six inputs are fed to each output unit and this output unit provides 
an unselect y1. This is the input x1, this is x2, this is x3, this x4, this is x5 and this is x6. 
And corresponding to these six inputs there are the six arcs with feed into the output unit 
and output of this unit is y1. There are weights on these arcs w1 w2 w3 and so on. Now 
these weights can be adjusted. 
 
Hence in a network of perceptron the system works as follows: the weights on the arcs 
are changed. So what happens is that we want to adjust the weights on the perceptron so 
that the function we want to represent can be correctly represented. As in other concept 
learning tasks we start with the training data and then we find whether the function that 
we wish to compute at this output is being indeed computed at these output units. 
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So we try to find out the correct function is being computed. If the correct function is not 
being computed we will change the weights so that the correct function can be computed. 
So what we normally do in training and neural network is we start with an initially 
arbitrary value of the weights the way and we inspect the data we have got. If the data we 
got agrees perfectly with the current structure of the perceptron then we are very happy. 
But if does not then we change the values of the weight so that it represent the data in a 
better way. Hence this process is called perceptron learning or training the neural 
network.  
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Suppose we are given some data or given one example data and according to the data 
there are some inputs namely x1, x2, xn and corresponding to this input the target output is 
t, so if our network correctly represents the function then the network for the input x1, x2, 
xn should give an output of t. But if our network does not exactly represent the function it 
will give different output like o. Therefore if t and o are identical then we do not change 
the weights. But if t and o are different then we adjust the weights of the network so that 
o is closer to t. Therefore for a simple perceptron the general weight training rule is like 
this; after processing some training examples each weight is on arc is just as follows: 
wimew is old wi plus delta wi. So to each weight we apply an incremental change of delta 
wi.  
 
What is delta wi? 
We take delta wi is equal to eeta times t minus o into xi. So t minus o is the difference 
between the target and that is achieved out. If t is equal to o then we do not change the 
weight delta wi is equal to 0. But if they are not same then we change delta wi 
proportional to t minus o times the weight of the input. And along with it we use this 
parameter eeta which is called the learning rate. If the learning rate is high we make a 
bigger change and if eeta is small we make a smaller change.  
 
Suppose the target is 1 so for this input the output should have been 1 but o is 0. In that 
case what we are doing is if t is 1 and o is 0 t minus o is positive and we are increasing 
delta wi. If we increase delta wi what will happen? Since our unit does a summation of 
wixi and if wi will increase and if xi is positive then the final output will increase, the 
target o was 0 so if the value of the input increases it will go towards 1 if xi is positive. If 
xi is negative then delta wi will be negative and then it will go towards the negative 
direction. Therefore what this training rule tries to do is, it tries to push o towards the t 
towards the target value. Hence the training rule is as follows:  
 
wi is changed by eeta t minus 0 into xi where t is the target value, o is the perceptron 
output we have obtained and eeta is the small constant which is known as the learning 
rate.  
 
What does this training do?  
If t is equal to o then do nothing and if t is not equal to o then the weights wi are changed 
such that the output of the perceptrons for the new weights is closer to t. 
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This algorithm converges to the correct classification under the following conditions: If 
the training data is linearly separable and if the value of the eeta is sufficiently small. So 
the basic idea is that some functions can be represented by a perceptron. And we will see 
that only linearly separable functions can be represented by perceptron. If the function is 
not representable by the perceptron then this algorithm may not give you the correct 
result of the training. But if the function can be represented that is if it is linearly 
separable then if the learning rate we use is sufficiently small then this process converges. 
And with initial arbitrary value of the weights by applying the training rule over the data 
that we have seen we will be able to get finally a weight vector which is able to represent 
the correct function.  
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The basic learning algorithm is as follows:  
The learning algorithm works in several phases, several ephocs. In each epoch the entire 
training set is presented to the neural network. Based on the entire training set the error is 
computed and based on the error the weights are updated. And the error is the amount by 
which what is the output by the network differs from the target.    
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Suppose we have this perceptron structure where x and y are the two inputs and this is the 
output and the target is 0.0. Now we initialize the weights as random values. Suppose w0 
is equal to 0.3, w1 is 0.5 and w2 is minus 0.4. Now suppose the function that we are trying 



to learn is the AND function for which the truth table is given here; if a is 0 and b is 0 
then the output is 0 and if a is 0 and b is 1 then the output is 0 and only if a is 1 and b is 1 
then the output is 1 and in all other cases it is 0. Now, given this network we have to see 
what the error of the network is for this which respect to this table. For example, if a is 0 
and b is 0 then we can try to find out what would be the output. For a is 0 b is 0 what we 
get is, these links do not get contribute anything but only this link contributes so we get 
output as minus 0.3 and the output should have been 0. For a is 0 b is 1 we get an output 
of minus 0.7 and the output should have been 0, for a is 1 and b is 0 we get is 0.2 and the 
output should have been 1, for a is 1 b is 1 the output is minus 0.1 the output should have 
been 0. So this is the current error we have on this perceptron and what we will do is 
adjust the weights using the weight training rule delta wi is eeta t minus o xi is to adjust 
the weights.  
 
Now, in order to analyze this training rule theoretically what we will look at a unit which 
is slightly different from the thresholding unit that we have looked at. So what we can do 
is, we will look at a simple linear unit which performs the summation but does not 
perform the threshold. So we use a simple linear unit and we want to find out the weight 
vector for which the linear unit is optimum. The linear unit also will give a value. The 
thresholding forces here forces the value to be minus 1 or plus 1. So what we will do 
instead is we will take a linear unit and we will require it to exactly be 0 under the zero 
conditions, 1 under condition one which we can use. For the linear unit the output is 
given by w0 plus w1x1 up to wnxn. Our task is to learn the value of weights so that the 
error is minimized.  
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Definition of weight: This is the squared error which is a popular measure of error. It is 
the error with respect to the current value of the weight vector. The weight values are the 
ones which we are trying to adjust. For the given values of the weights we will have 
given value of the error and as we change the weights the error function will also change. 



So error is a function of the weights. And we use the following definition of error: ew is 
half of sum over all training examples (td minus od) whole square. So td is the dth is the 
particular training example it is a target value and od is the output for that input by our 
network. So td minus od is 0 means the network agrees with the example and if td minus 
od is not 0 then it does not agree. So the summation of these (td minus od) whole square 
times half is the error function we will use and it is a very common function.  
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Now what we will do is inspired by gradient ascent. Suppose we have a curve and this 
curve is a function of w, if we take a point on the curve and if we find the slope of that 
point the slope gives the direction in which the curve is moving. Now if we move 
towards the direction of the slope a little bit we will be going towards the top of the 
curve. And at the extremum points the slope is 0. If the slope dfdw is greater than 0 that 
means if we follow the curve we will move towards the peak of the curve. If dfdw is 
equal to 0 we have reached the extremum position of the curve.  
 
Now our objective is, we are given an error function on the weights and we have to adjust 
the weight values in order to go to a region where the error is at minimum. Therefore 
instead of doing gradient ascent we will try to do gradient descent on the error curve and 
our objective will be to start with the point and then move in the negative direction to the 
slope until we reach a point where the slope is equal to 0, that is we reach the minimum 
of the error function. The error depends on the weight vector. 
 
Suppose we have a very simple system or simple learning problem where there are only 
two weights w0 and w1, now the error function can be given as 1 by 2 sigma (tk minus ok) 
whole square and if we have ok as a linear unit then we have a quadratic error function. 
And this quadratic function has the shape of a parabola. The characteristic of a parabola 
is that it has a unique minimum. When we start we have a particular set of weight values. 
Suppose this is our current weight value we want to find that combination of weights for 



which the error is minimum. So we want to reach this combination of weight values and 
we have started from this place in the error service.  
 
So what we will do is, we will compute the gradient at this point of the error surface and 
we will take a small step in the negative direction of the gradient so that we can descent 
the error surface and we will go on descending the error surface until we reach closer to 
the global minimum. And finally we might be able to reach the global minimum. For this 
surface because it is a parabolic surface there is only one minimum which we can reach. 
So the error on the weights is given by 1 by 2 sum over (tk minus ok) whole square.   
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And the gradient of this error function is, we can find the partial derivative of this error 
function with respect to each weight value. So grad E[w] can be written as del e del w0, 
del e del w1 and del e del wn. So we have the error slope along every dimension which 
gives us the gradient vector. Now our training rule will be to change each weight towards 
the negative direction of the gradient vector so that we can descent the error surface. Here 
w is the weight vector so delta w is equal to minus eeta grad E[w]. So grad E[w]  is this 
quantity which is the partial derivative of the error vector. So, each individual wi is 
changed as follows: delta wi is equal to minus eeta del e del wi that is the partial 
derivative of e with respective of wi. So we have to find out what is delta wi for the linear 
unit that we are considering. 
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Hence, in gradient descent we are trying to train the wis’ to minimize the squared error 
which is given by ½ sigma over all training examples (td minus od) whole square. As we 
saw in the last slide grad E[w]  is a vector of the partial derivatives with respect to the 
weights and delta wi is equal to minus eeta del e by del wi. Now let us try to compute del 
e del wi for the error function that we have chosen. Now what is e? e is nothing but half 
sigma t d minus od) whole square. Now what is od?  
od is nothing but sigma wixi. So we have to find the partial derivative with respect to wi 
from this function 1 by 2 sigma (td minus sigma wixi) whole square. 
  
Now you know that the only portion of this function that depends on wi is this portion. 
The (td minus sigma wixi) whole square when we are taking a particular wi only 
corresponding to this wi this term is the only important term. So this derivative can be 
written as two times td minus od into minus xi so here the derivative is minus xi change 
of variables, we have two times this function (td minus sigma wixi) whole square which is 
two times td minus od into minus xi into 1 by 2 which gives us eeta sigma by d td minus 
od into minus xi the negative of this. Therefore to sum it up we have the following 
algorithm for performing gradient descent on a linear unit given a set of training 
examples D and where we have n inputs. So the algorithm proceeds as follows: 
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We initialize each wi to a small random value. Then we perform the following loop. Until 
the termination condition is met we do the following: initially we put delta wi as 0 that is 
we reset the value of delta wi. Then we pick up each training example from D. So each 
training example comprises of inputs x1, x2 and xn and the target value t. For each of 
these training examples what we do is we give this input to the linear unit and find the 
computed output o. The output o is simply sigma wixi. Now, for each linear weight what 
we do is modify delta wi as eeta times t minus o times xi and then we say wi is wi plus 
delta wi this is following a method that we found out that delta wi should be eeta into t 
minus o times xi.  
 
We continue doing this until termination. In the termination condition we terminate when 
the error falls under a given threshold. So what we are doing is we are looking at all the 
training examples. For each training example what we are going to do is we are going to 
find out the error with respect to that training example. And we do it for all the training 
examples. So we basically finding the sum of this term over all the training examples that 
is why we have to do, so delta wi is previous delta wi plus eeta times e minus o times xi. 
And before we have started this we have put delta wi 0. So what we are doing is basically 
we are finding out the sigma over all training examples eeta t minus o xi. So we are doing 
a version gradient descent which is called a batch gradient descent algorithm where we 
start with a particular vector we process all the training examples we find the cumulative 
error and accordingly we change the rates and again we continue this process and stop 
when the error is accepted.   
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This version of gradient descent this algorithm is called the batch mode gradient descent 
where the weights take care of the error over all the training examples. However this is 
expensive to apply after processing all the training example once we are able to adjust the 
weight values once and therefore this process can take a very long time. So what people 
often use instead is an incremental version of the gradient descent algorithm where for 
each example that is processed the weight vector is changed. And this incremental 
gradient descent is expected to be much faster than the batch mode gradient descent.  
 
In incremental gradient descent what we do is we modify the weight vector by processing 
a single training example. So we look at a single training example with respect to how we 
modify the weights, we look at one more training example then we modify the weights 
and so on. So this process is much faster because after every training example we modify 
the weights. Therefore the rate of change of weights is much faster. And the good news is 
that incremental gradient descent is an approximation to batch gradient descent. And if 
we keep the value of eeta small then the incremental gradient descent converges to some 
value which is very close to what you will get by using batch gradient descent and this is 
something we usually use in practice.  
 
Type of functions that can be represented by a linear unit or by a linear threshold unit: 
What we really want to know is what a decision boundary is. The perceptron will 
basically try to separate the positive examples from the negative examples. And in order 
to do that we use the geometric concept of decision boundary. So the decision boundary 
separates the positive from the negative example. For example, suppose we have these 
two features x1 and x2 and we have examples which belong to two different classes, these 
belong to a and these belong to b and we want to separate a’s and b’s. 
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We can have the decision surface so that a’s are on one side of the decision surface and 
b’s are on the other side. Now in this two dimensional case we can draw a straight line 
separating a’s from b’s. In all cases we will not be able to get a straight line separating a’s 
and b’s. But in this case we can get and we say that this function is linearly separated.  
 
What if we have more than two input features?  
In that case if we have n input features and if we can have a n minus 1 dimensional hyper 
plane that separates the two classes and then also we will say that the function is linearly 
separable. The perceptron learns a function of the form w1x1, w2x2, wnxn so this is a linear 
function which defines a hyper plane. 
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So a perceptron can only successfully separate the classes between which there is a linear 
separator. Therefore this figure is an example of points which are linearly separable. In 
this slide the green points are separated from the yellow points by this line. Now here we 
have another example where we have two positive points here and two negative points 
here. And you can see that we cannot find a plane or find a straight line which separates 
the positive points from the negative points and such a straight line does not exist. So we 
say that this training set is not linearly separable. This training set is linearly separable 
because there exists this line that separates the positive points from the negative points.  
 
(Refer Slide Time: 47:42) 
 

 
 



This is an example of a function which is not linearly separable. Now if you try to learn a 
function using a perceptron you can find that no straight line will be able to perfectly 
separate the positive points from the negative points that is the pink points from the green 
points. So you need a more complex decision surface to separate the positive points from 
the negative points. Perhaps this decision surface separates most of the pink points from 
the green point but there is something left over so you also need to incorporate this. So 
you need more complex decision surfaces to separate this problem.  
 
We need to look into neural paradigms where we can deal with such complex functions. 
Now, when we have threshold units we cannot do gradient descents because thresholding 
is a discontinuous function. This function the step function is not differentiable and we 
did the differentiation the derivative finding in order to find the slope. So, instead of 
dealing with threshold units we can look at linear units.  
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But if we use linear units a single linear unit can only give us linear decision surfaces not 
more complex decision surfaces. Now what we can do is we can think of having 
multilayer neural network so that we can cascade these different layer and we can build 
more complex networks. But if we make more complex networks out of linear units you 
can easily see that the result is again another linear network. So a linear function is not 
able to represent all types of functions. So what we want to do is we want to be able to 
represent more complex functions. And in order to do this we will be using multilayer 
neural networks. But we can not use linear units because that will not give us the power 
and we do not want to use thresholding units. Using thresholding units in multiple layers 
we will see that we can represent more complex functions but thresholding units are 
difficult to learn because we cannot use the trick of gradient descent. Therefore what we 
will do is we will try to look at other types of functions which are non linear functions but 
which are differentiable and using which we can represent more complex functions.          
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Multilayer neural networks: In a multilayer neural network this is the input layer and this 
is the output and between the input and the output we put other units where these units 
correspond to the hidden units. In a layered neural network we will put these units in 
layers such that the output from one layer feeds as the input of the next layer. This is an 
example of a layered network where the input goes through several layers and then goes 
through output. Now we will call this intermediate layers as the hidden layers because 
they are not part of what is the output. Now we will see that a layered network is able to 
represent the XOR function which you cannot represent by a perceptron.    
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So, if you just think of a XOR function suppose you have two inputs x1 and x2 the XOR 
function has the following characteristic. If x1 is 1 or x2 is 0 then it is plus, if x2 is 0 and 
x1 is 1 then also it is plus, if both are 1 it is minus and if both are 0 then also it is minus 
and there is no line separating the pluses and the minuses. The XOR function can be 
represented by a two layered network as follows: The OR and the AND function can be 
represented by a simple perceptron. Find the neural networks that can represent the AND 
and OR function. Hence this layer can find the OR of x1 and x2 and can find the AND of 
x1 and x2 and this can compute the XOR function. So, the XOR function can be computed 
by a two layered network using three computing units. Thresholding units are not 
amenable to differentiation, linear units do not give us the power and we are going to 
look at non linear functions which are differentiable. And the sort of functions we will 
look at are the sigmoid function. 
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The sigmoid function has a shape as follows: So sigmoid function is a S shaped function 
which is somewhat close to a thersholding function and it gives us a value between 0 and 
1 and we will be using a network of sigmoidal units as our computing units. So, in a 
sigmoid function we have these inputs then there is first a summation of the inputs and 
then we apply the sigmoid function the sigmoid function of x is nothing but 1 by 1 plus e 
minus x. So, the output of this summation unit is net and the sigmoid function we find y is 
equal to sigma of net that is y is equal to 1 by 1 plus e minus net.  
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This is also represented here as follows: We have this summation unit which is similar to 
linear threshold unit and then we apply the sigmoid function so output is sigma of net, net 
is sigma wixi and therefore output is 1 by 1 plus e 2 minus sigma wixi. 
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The sigmoid function as we said is differentiable, the shape is similar to the thresholding 
function a little bit and also sigmoid functions are easy to manipulate because these sigma 
xdx  gives us, so if you do the differentiation you will see d sigma dx is nothing but 
sigma x into 1 minus sigma x. This makes it very easy to compute the differentiation of 



the sigmoid function. Later we will see how multilayered neural network using the 
sigmoid units can be learnt.  
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So this is the example of sigmoid function. The sigmoid function is y is equal to 1 by 1 
plus e minus x. Now if we add another factor here k then if we vary, this function 
corresponds to k is equal to 1 but if we vary the value of k we will get other functions as t 
per than the sigmoid function. So, for k is equal to 1 we get a function whose shape is this 
pink curve but for other values of k is equal to 0.1 we get this curve. So, for different 
values of k we can find different shapes of the sigmoid curve.      
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Later on let us learn how to apply the sigmoid routine.  
 
Some questions: 
In lecture 35 we asked you to represent these functions using decision tree. These things 
are very easy to represent using a decision tree. Suppose for example NOT a AND b OR 
c AND NOT d so to represented by decision tree what you can do is we can initially test 
on b and if b is true then we test on a and if a is false then the answer is positive 
otherwise the answer is negative. 
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If b is false then we test on c, if c is true then we test on d, if d is false it is positive and so 
on so we can build the decision tree corresponding to this function or this function. Take 
the same functions and try to represent them using neural network initially using a 
perceptron and if that fails try using a more complex network of two layers.   
 
Parity function of A B C D: The decision tree will not be small it will be actually a full 
decision tree of four levels where we have to list out all the paths involving A B C D so 
you start with any of the attributes like a and the next level you check b and c then d you 
draw the full decision tree and you find out the leaves which will be positive and the 
leaves which will be negative.  So this decision tree is going to be quite large.  
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Questions on lecture 36: 
The first question was, given a training set how will you decide when to stop growing the 
tree.         
 


